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Real-time computer systems must meet specific deadlines in generating their
outputs. As a result, all components of the real-time system must have predictable
performance so hardware resources can be effectively scheduled, ensuring all
deadlines are met. Hierarchical memories, by their nature, have components with
unpredictable behavior. For this reason, hierarchical memory subsystems are
often not used in hard real-time systems and the substantial performance
advantages they offer are therefore not realized. This research focuses on
developing methods which make the highest level member of the merﬁory
hierarchy - the cache - predictable as seen by the processor, so it may be used in

real-time systems. This predictability is a result of improving the cache's “worst

vi




case” effective memory access time which allows the processor to operate more
efficiently, thus increasing its ability to meet real-time deadlines. The problem of
unpredictable caches is examined and explained using cache reference inter-miss
distance (IMD), IMD frequency of occurrence, and worst case effective memory
access time. Two approaches for improving cache predictability are presented and
analyzed. They include modifying the cache organization and developing a
prefetch architecture. By modifying parameters of the cache such as cache size,
block size, cache type, and degree of associativity, cache miss behavior and the
distribution of IMD values can be controlled in a predictable manner. By choosing
specific cache parameter values, favorable IMD cache miss distributions can be
achieved that result in lower worst case effective memory access times and faster
program execution times. A prefetch architecture is devéloped to enhance the
performance and reliability of the memory subsystem. This is done in order to
avoid specific (small) IMD values by “hiding” cache misses in addition to
eliminating them through cache design techniques.

The final aspect of this research involves the use of reliability theory to
illustrate that techniques developed to eliminate small IMD values result in real-
time systems that can meet their deadlines with a high degree of reliability. This

is accomplished by estimating constant failure rates and their associated confidence

vii




intervals for specific cache architectures. This information can then be used to

calculate system reliability using specific cache design parameters.
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Chapter 1 Introduction

1.1 Background

Real-time computing systems perform work in the face of time constraints
generated by external events, environmental factors, or interactions with other
computers. In real-time systems, the correctness of applications depends not only
on the logical computation being performed, but also on the time at which results
are produced. Real-time systems fall into two basic categories - hard and soft. A
hard real-time system has “hard” program execution deadlines that the computer
must meet or catastrophic consequences could result. Soft real-time systems also
have execution deadlines, but if missed, don't result in catastrophe. Rather, the
value of the result diminishes as time progresses.

Since real-time systems have fixed deadlines, it’s essential for program
execution times to be predictable so the computer's resources can be effectively
scheduled to meet those deadlines. In addition, designers and programmers must
know the execution time of individual tasks to determine if specific routines can
meet the application's real-time requirements. For these reasons, hardware
resources that may lead to unpredictable variations in program execution time are
usually not allowed. One such resource is the hierarchical memory subsystem.

Hierarchical memories are used to improve the overall performance of the system




by delivering code and data from memory faster, on average, than might otherwise
be possible. Processors are generally much faster than the memory subsystem and
a bottleneck is created that slows the exchange of information between memory and
the processor. This bottleneck is caused by limited bandwidth resulting from the
overall latency of the memory subsystem. As a result, the processor can waste
precious cycles waiting for code and data to be delivered from memory. A
hierarchical memory structure helps relieve this bottleneck problem by reducing
the average memory latency, resulting in an overall increase in bandwidth.
An example memory hierarchy is shown in Figure 1.1 and consists of two
levels - a cache (higher level) and main memory (lower level). The cache has
much smaller capacity than main memory and as a result, also has a lower “hit
rate,” or probability of containing the required information when queried.
However, it has a much faster access time than main memory and significantly
improves the average performance of the memory subsystem. Main memory has
a much larger capacity, but its access time is much slower than the cache's. Due
to the storage capacity differences of each level, the hit rate at any level of the
hierarchy is uncertain and may differ for each execution of a program or programs,
thus resulting in unpredictable behavior in memory access times. While

hierarchical memories are extremely efficient, their unpredictability often excludes
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Figure 1.1 - Hierarchical Memory

them from real-time computer architectures resulting in a significant loss in overall
performance. Designers of real-time systems are often forced to take the approach
of designing to “worst case” specifications, frequently resulting in under-utilization
of the processor. These “worst case” specifications actually lead to the most
predictable program execution times which is desirable from the designer’s point
of view, but also lead to the worst performance in terms of program execution
time. As a result, real-time systems are limited to those situations where worst
case performance is acceptable. This in-turn, limits the number of potential
applications that can be controlled in real-time. In addition, recent references have

emphasized the need for real-time caches to support multitasking applications




[NILS94], [EGLE%4].

Since reducing unpredictability while maintaining performance is the main
concern for real-time system designers, the focus of recent research has been on
the highest level memory subsystem - the cache. If cache memory can be used in
real-time systems, hardware resources can be conserved while overall system
performance is increased.

1.2 Statement of the Problem

As discussed by Koopman, the very design features that make current CPUs
extremely fast can also lead to unpredictable program execution times [KOOP93].
As an example, an Interrupt Service Routine (ISR) was written and executed one
million times to determine the time required for each execution of the ISR on an
Intel 80486 microprocessor. This ISR was interspersed with runs of a foreground
program accessing a memory array. The ISR execution time varied drastically as
shown in Figure 1.2, with a “best case” execution time of 148 cycles and a “worst
case” execution time of 272 cycles. This range of execution times clearly
illustrates the disadvantage of using caches in real-time systems - the performance

gained by caching code and data is statistical in nature, and there are no guaranteed
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execution times. Furthermore, contrary to what appears to be sharp boundaries,
both the best and worst case execution times are not clearly defined. If the ISR

program ran an additional one million times, there could be some ISR executions

times slower than 272 cycles and some faster than 148 cycles. Since the real-time

designer is limited by the worst case execution time, a conservative approach
should be taken. This leads to the conclusion that the worst case execution time
could be as slow as if the cache were “turned off.” Figure 1.3 shows ISR program

execution times with the cache both enabled and disabled, and illustrates that
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execution could take as long as 508 cycles with the cache disabled (Figurel.3b).!
Therefore the best case execution time can be considered 148 cycles while the
worst case execution time must be 508 cycles. To the real-time designer or
programmer, this analysis would lead to the following choices: accept the 508

cycles as worst case and use this as the design point for scheduling resources, or

use something less than 508 cycles and accept the penalty associated with any

1 Execution times vary with the cache disabled due to timing jitter
associated with refreshing DRAM memory. Ideally, the execution time for this
case would be constant for each individual execution of the ISR program.
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missed deadlines. The first choice is often accepted by designers as the “safest”
case. While this results in a design point that will cover all possible execution
times, it can result in poor performance and processor under-utilization. In effect,
the advantages of including cache memory are not fully realized since this is the
same case as if the cache were disabled. The second choice, choosing a design
point less than 508 cycles, may be acceptable for soft real-time systems, but hard
real-time systems don't allow deadlines to be missed, so it is not a feasible option.

The techniques described in this dissertation significantly reduce the worst
case execution time associated with the use of cache memory, thus allowing
increased processor performance and utilization. By reducing the upper limit
execution time (by lowering the memory subsystem's worst case effective memory
access time) performance will increase in a predictable manner without any risk of
missing real-time deadlines. As shown in Figure 1.4, if a design point for system
timing is chosen such that it is less than the worst case, a significant risk of missed
deadlines exists. The methods described in this paper eliminate this risk by
reducing the worst case effective memory access time, thus allowing the processor

to run more efficiently without the added risk of missing real-time deadlines.
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1.3 Research Scope and Goals

The primary goal of this research is to develop methods that allow the use
of hierarchical memory in real-time systems. These methods focus on improving
the performance of the memory system’s highest level component - the cache. By
reducing the cache’s (and memory system’s) worst case effective memory access
time, the resulting performance becomes more predictable. Due to more effective
utilization of the processor, individual tasks are scheduled more efficiently. Asa
result, more events can be controlled in real-time. Since cache memories were
originally developed specifically to improve processor performance for the average
case, little work has been done in the area of improving worst case cache

performance. However, since real-time control applications are limited by the




worst case, the research described in this dissertation focuses on improving the
worst case timing behavior - not average behavior.

A primary method of improving cache performance is to modify the
distribution of cache misses rather than the frequency of cache misses. As will be
shown later, to successfully design cache memories for real-time systems, they
should be designed so that misses occur infrequently with respect to one another -
successive cache misses or a miss-hit-miss sequence are to avoided. To better
understand this concept, Section 3.2 discusses the concept Cache Reference Inter-
Miss Distance (IMD). The IMD is the “distance” between successive cache
misses, and can be used as a measure of how well a particular cache design will
operate in a real-time environment.

The research is divided into three parts, each summarized below and
presented in the following order.

1) The first part involves examining cache architectures to determine if any
relationship exists between the choice of specific cache parameters and the
resulting IMD distribution, and if specific cache organizations might be helpful in
optimizing worst case cache performance by eliminating small IMD values from
the distribution. Parameters examined include cache type (unified or split), cache

size, block (line) size, and associativity.




2) The second part of the research involves developing a prefetch
architecture that facilitates prefetching code and data from main memory in an
attempt to anticipate cache misses, thereby eliminating or “hiding™ specific types
of cache misses.

3) The third and final part of the research focuses on using reliability
theory to demonstrate the usefulness of the proposed techniques in reducing
effective memory access time in real-time systems. The establishment of
confidence levels and intervals are used to estimate the constant failure rate and
reliability of real-time cache management and design techniques.

Although a significant amount of research has been performed on real-time
operating systems, this research focuses on hardware and related software
techniques to manage the behavior of cache memory. Since real-time computers
are typically found in embedded systems, a general assumption is made that an
algorithmic scheduling policy is used to schedule hardware resource utilization and
no operating system is required. Therefore real-time operating systems are not
addressed in this research dissertation. In addition, the issue of real-time interrupts
is not addressed. Their presence introduces a number of unique problems which
are outside the scope of this research. Their study is deferred for possible future

research efforts.
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1.4 Organization of the Dissertation

This dissertation is organized into seven chapters and five appendices. The
seven chapters describe the basis for the research, previous work accomplished,
methodology, and results. The appendices provide background material for
concepts used to support the research in addition to data obtained during the
research.

Chapter 1 introduces background information and states the nature of the
problem. An example is shown that illustrates the varying program execution
times due to the use of cache memory. The scope of the fesearch as well as goals
are also discussed.

Chapter 2 discusses previous work performed in the area of memory
subsystem architecture design and associated techniques to support real-time
computer systems. Three basic approaches have been taken - protecting the
contents of the cache by “freezing” or “locking” specific lines or blocks of the
cache, protecting the contents of the cache through dynamic cache partitioning, and
restoring the contents of the cache after context switches, by saving its “state.”

Chapter 3 discusses how cache performance is evaluated and is preseflted
in terms of effective memory access time, cache reference inter-miss distance

(IMD), and Speedup (S). In addition, the phenomenon of cache miss reload
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transients, methods used to evaluate IMD performance, and program benchmarks
are discussed. These topics are introduced here and used later in Chapters 4-6 to
evaluate specific cache design strategies.

Chapter 4 presents the methodology used and results of the first part of the
research: modification of cache parameters and the resulting effect on IMD
distribution. It also presents an analysis on various processor type - bus topology -
cache type architectures to illustrate their potential impact on real-time system
performance.

Chapter 5 provides the methodology and results of the second part of the
research: the development of a prefetch architecture used to eliminate or “hide”
cache misses causing small IMDs. Choice of prefetch algorithms, methods of
implementation, and design trade-offs are discussed.

Chapter 6 presents the third part of the research: the methodology used to
calculate the reliability of real-time cache architectures. The results of several
simulations and the subsequent reliability calculations are given.

Chapter 7 provides concluding remarks on the research performed and
discusses some areas for potential future work.

The Appendices contain detailed discussion on several supporting topics.

The principles of cache associativity, prefetching methods, reliability theory,

12




performance evaluation and simulation tools (program tracing and cache

simulation) are provided. In addition, simulation output data is also included.
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Chapter 2 Previous Work

2.1 Introduction

Several approaches for making program execution time more predictable
have been proposed. One approach is to not include cache memory at all, thus
avoiding unpredictable behavior. Other approaches can be classified as either
protection or restoration schemes. Protection implies that the contents, or portions
of the contents, of the cache will be “protected” and not allowed to change while
an application program is executing. Restoration schemes allow the cache's
contents to change while one task is preempted by another, but is “restored” to its
previous state when the preempted task is reloaded. Each approach is discussed
below.

2.2 Removal of Hierarchical Memory (Cache)

For many real-time system designers, one of the most obvious choices is
not to include hierarchical memories in their designs. In Constructing Predictable
Real-Time Systems, Halang and Stoyenko state “The hardware must not introduce
unpredictable delays into program execution. Hierarchical memories can lead to
unpredictable variations in process execution timing. Thus caching, paging, and
swapping must be either disallowed or restricted” [HALA91]. While it is clear

that this choice avoids the problems associated with unpredictability, the

14




performance advantage of a high bandwidth, low latency memory hierarchy can't
be realized. As a result, long execution times and low processor utilization may
result.

2.3 Protection of Cache Contents

One approach to improving cache predictability is to “lock” or “freeze”
specific blocks in the cache and protect them from being overwritten. In this
scheme, the most frequently accessed routines of each task or application program
are loaded into a specific area of the cache at initial program load and “dedicated”
to these tasks. This code, which is generally only a portion of the entire task, is
never evicted once loaded. As a result, any access to this portion of the program
is guaranteed to be a cache hit. However, the number of cache hits is limited to
the most frequently accessed routines. If the frequency of use drops for those
routines, cache performance also drops off rapidly [KIRK90]. Figure 2.1
illustrates this technique.

Dynamic cache partifioning is another method of protection. The cache is
divided into a predetermined number of partitions by the hardware. When a task
is ready to run, a specific number of these partitions are requested, and all cache
references are made to them. The partitions are protected during execution of the

program. However, since the partitions are “owned” by specific routines, the
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Figure 2.1 - “Freeze” Cache Blocks/Lines

possibility of insufficient cache partitions to meet outstanding requests results in
some unpredictability. As a result, the success of this technique is also limited to
certain applications.

Kirk [KIRK91], Wolfe [WOLF93], and Liu [LIU93] have performed recent
work on optimizing cache partition schemes, resulting in improved worst case
performance execution times.

2.4 Restoration of Cache Contents

Cache restoration is a technique that saves the state of the cache (or portion
of the cache) for later use by a specific application, and is shown in Figure 2.2.
Initially, the cbntents of the cache are protected until the task either completes or

is preempted. If preempted, the state of the cache is saved and restored when the
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task is recalled. If the task completes, the corresponding state of the cache is not
saved. While this technique can work effectively, a significant amount of time is
required to load the necessary routines into the cache and save the existing state.
If the cache state is saved frequently, the associated overhead can significantly

limit overall performance.

Cache Partitions

Protected
Partitions
(dedicated to
current task)

Shared
<— Partitions
(available)

Figure 2.2 - Partitions Protected During
Execution of Current Task
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Chapter 3 Description of Cache Behavior

3.1 Introduction

This chapter introduces several topics that are used to describe and evaluate
the behavior of cache memories designed to support real-time systems. These
topics are used extensively in Chapters 4 and 5 to illustrate how modifying cache
design parameters and prefetching appropriate code and data can reduce the
effective memory access time and improve the predictability of cache memories.
As a result, individual topics relevant to this research are introduced here, and set
the stage for their later use describing specific design strategies and simulation
results.
3.2 Effective Memory Access Time

As described in the introduction, a goal of this 1;esearch is to develop
methods and architectures that allow the use of hierarchical memory subsystems
in hard real-time systems. To achieve this goal, the real-time program’s worst case
execution time must be reduced. This may be achieved by reducing the memory
system's worst case effective memory access time, t.,.uc-

Since program execution time is critical to real-time system design, it's
useful to illustrate how the access time of the memory subsystem affects the

predictability of program execution time. The access time of the memory
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subsystem is that time required to load (read) or store (write) information from/to
memory. Generally there are two cases - when there is a cache “hit,” and when
there is a cache “miss.” These two cases are illustrated in Figure 3.1 and assume
that an access to the cache takes one clock cycle while an access to the second level
(main) memory takes ten clock cycles. The access time for a cache hit, illustrated
in Figure 3.1a, is one cycle. The access time for a cache miss however, is the sum
of the time required to access the cache (to determine if the information is stored
there), and an access to the second level of memory to retrieve the required

information. In Figure 3.1b, this totals 11 clock cycles.

Processor Processor
1 Cycle 1 Cycle
10
Cache Cache Cycles
Main Main
Memory Memory
a) Cache Hit b) Cache Miss

Figure 3.1 - Memory Access Time
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The effective memory access time, f,,, is the average time required to
retrieve information from the memory subsystem and is measured over a number

of cache/memory references. It can be stated as

t =Pt + Pms(tc-k T) cycles §))

eq hit ¢

where P, is the weighted average probability of a cache hit, t, is the time required
to access the cache, P, is the weighted average probability of a cache miss, and
T is the transport time necessary to access lower level memory (on a cache miss).

Since P,,=1-P,,, equation (1) may be expressed as

-
f

a-pr,)t. +P (t,+T) cycles

miss

@

t, + P, T cycles

The effective memory access time can be normalized to the access time of the

cache, t. leading to

., =1 +P,, T cycles 3)

(This normalized expression for t., will be used throughout remainder of this
dissertation.) The value for T may be as large as an order of magnitude greater

than the time required to get information from the cache and is often referred to
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as the cache’s “miss penalty.” For example, if 7=10 cycles and P...=0.1, the
resulting t,, would be equal to 2 clock cycles. This leads to the conclusion that on
average, the time required to access any item from the memory subsystem is 2
clock cycles. However, there may be instances where Py~ 0 or P~ 1 resulting
in access times of one and 11 clock cycles respectively. This range of memory
access times obviously leads to unpredictable program execution times. In this
case, the designer of a hard real-time system should assume a “worst case”™ access
time of 11 cycles, even though the probability of it occurring may be small. This
limits the number real-time applications to those that can accept a worst case t.,
value of 11 cycles. It is this “worst case effective memory access time”, t eawes
that should be reduced in order to improve processor utilization and scheduling of
real-time tasks. Ideally, for a predictable real-time computer system, te,.q. Will
always be less than the upper limit imposed by the real-time deadline.

3.3 Cache Reference Inter-Miss Distance (IMD)

In addition to the more traditional P, or P,;, processor-cache performance
can also be described through the use of Cache Reference Inter-Miss Distance
(IMD). The IMD is the “distance,” measured in cache references, between
successive cache misses [VOLD81]. Example IMDs are shown in Figure 3.2.

IMD can be related to P,,;,. For example, if IMD=3 then a cache miss
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Figure 3.2 - Examples of Cache Reference Inter-Miss
Distances (IMD); IMD=3, IMD=0
occurs after every third memory reference. It follows that the probability of miss

can be described in terms of IMD as

= == =025 @)

Generally, inter-miss distances vary so like P, the IMD value would also be a
weighted average of all observed IMDs. Therefore, a more accurate value of P,
may be stated as

1

P S —
miss IMD +1 (5)
wa

where IMD,, is the weighted average of all IMD values. IMD,,, may be stated as
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where f; is the frequency of occurrence of each individual IMD value, IMD(i).
However, since the real-time system performance is limited by the worst case
(slowest memory access time), the “worst case IMD” is of interest. This value for
IMD assumes that IMD is not a weighted average, but represents the smallest
distance between consecutive cache misses (since this causes the largest delay in
memory access time). It follows that the “worst case effective memory access
time,” t.,.. is a function of the worst case (smallest) IMD value - IMD,, - and can

be stated as

e = 1.+ —T—— cycles 7
(IMD _+1)

The two extreme values for t., . are a result of IMD,.=0 and IMD,, =>.

It follows that

T

lim 5, (1+————
Mb=0 =" IMD, +1

) =1 + T cycles (8)

T

lim ) . (1+————
b IMD,_+1

) =1 cycle )
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If IMD,,.=0, then all references to the memory system are cache misses (Priss=1)
and ¢,  =1+T (see Figure 3.1b). This represents the “worst case.” If

=1

IMD, ==, then all references to the memory system are cache hits, and ¢,__ =
cycle (see Figure 3.1a).

The use of IMD to describe t,, provides unique information that isn’t
available through the use of only P or Py. For example, if P, =0.2, then
over ten memory references, two are cache misses and eight are cache hits. This
knowledge of P,;,, however, doesn’t specify where the misses occur with respect
to one another. IMD however, does specify where the misses occur in addition to
their frequency. Knowing both the distribution and frequency of cache misses
allows for possible solutions to the real-time cache problem that might not
otherwise be possible. For example, in this dissertation, potential solutions involve
the use of prefetching techniques to “hide” memory latency. This latency hiding
is possible only if the distribution of cache misses is known. This is because
prefetching techniques are used to hide memory latency effects during cache hits.
Therefore, if a prefetching technique requires three cycles between any two cache
misses to effectively hide membry latencies, the IMD should be no less than three.

This approach could not be used if IMD data were not available and one had to

rely strictly on Py, or P, data.

24




It is important to note that worst case IMD values imply that the cache is
experiencing misses at the IMD,,, rate at all times. For example, if IMD,.=0, the
assumption must be made that a miss is occurring for each cache reference,
regardless of the average case (IMD,,). Therefore when designing hard real-time
systems, deadlines must be scheduled using t.,.. values derived from IMD .
regardless of how good average IMD values may be (IMD,,,). This can be
illustrated by the following example in which cache activity is examined while
executing a program. For the first ten cache misses, if two occur on the first two
references, then one miss occurs every 100 cache references thereafter, IMD,,.=0,
but IMD,,,=88.8. Even though the majority of IMD values are large (IMD=100)
and IMD,,,=88.8, the worst case IMD value of 0 should be used to derive real
time scheduling deadlines. As a result, program execution time should be
calculated using IMD,,.=0 instead of the average case (IMD,,,=88.8). This leads

to the following

L w1 * T cycles for IMD__=0 a0
t, -1 +0.011T cycles for IMD__=88.8

In essence, any substantial performance advantages gained in decreasing average

program execution time by improving IMD,, is wasted unless an improvement in
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IMD,,. is achieved.

In addition to providing data on “distances” between consecutive cache
misses, knowledge of IMD data also provides an opportunity to measure the
performance of a specific cache architecture from a different viewpoint. In real-
time systems, a goal of the system designer is to know the worst case execution
time of a program or task so that additional tasks can be effectively scheduled and
executed. By specifying the worst case IMD, the designer would know how
frequently cache misses occur and the minimum distance between misses. From
this viewpoint, efforts can focus on increasing the IMD,,. (making IMDs larger)
as opposed to viewing the solutions as simply lowering the value of Pp,.
Although P, and IMD are closely linked, two views of the same problem usually
allow more flexibility in developing efficient solutions that may not be possible
when the problem is viewed from a single angle. This additional view of cache
(and memory subsystem) behavior provides the basis for the solutions presented
in the remainder of this dissertation.

3.3.1 Example IMD Distribution

An example distribution of inter-miss distances, based on data published by

Voldman and Hoevel of IBM is shown in Figure 3.3. A portion of their work

examined the occurrence of cache misses with respect to one another and correlated
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the “distance” between misses to specific causes. Voldman and Hoevel proposed
that the distribution of IMDs are basically bi-modal, where the smaller IMDs are
"bursts” of cache misses that occur after sudden changes in address locality (e.g.,
subroutine calls and context switches), while the larger IMDs are "gaps" of long
duration occurring between tasks [VOLD81]. This concept is illustrated in Figure

3.4.
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400 T

IMD Frequency of Occurences
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0 20 40 60 80 100
Cache Reference Inter-Miss Distance (IMD)

Figure 3.3 - IMD Histogram for 1 Million Memory References
[VOLDS81] (1981 IBM Corp, Reprinted with Permission)
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3.4 Relationship Between IMD and Program Execution Time

As shown in the equation for t.... (7), te.w. is inversely proportional to
IMD,,.. Therefore in an effort to minimize t., ., the elimination of smaller IMD,
values are of primary concern. This is because hard real-time systems are always
limited by the longest program execution times possible - those caused by the
largest t.,. values (and the smallest IMD values). For example, if every cache
reference were a cache miss (worst case for program execution times, but best for

predictability) then IMD,,.=0, and assuming 7=10 cycles,

1
beg-we = 1+ 0
0+1

= 11 cycles (11)

However, if every other reference were a cache miss, then IMD,.=1, and

10 . 6 cycles 12)
+1

Obviously, smaller IMD values increase t., .. which will in turn, limit overall
system performance. At this point, it is worthwhile visualizing how IMD values
affect t,,. Since t., is an effective time, it is calculated over a range of memory

accesses including both cache hits and cache misses. It can be expressed as

total memory access time
by = Y (13)

“  total memory references
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For the cases mentions above, if IMD,,.=0, this implies that there is a cache miss
for every memory (cache) reference. Assuming T=10 cycles, six cache

references, and using Figures 3.1 and 3.5a as illustrations, it can be seen that

_ . _ total memory access time _ (1+10)6
(IMD , =0)= =

=11 cycles  (14)

t‘l “we

total memory references 6

However, for IMD,.=1, the worst case effective memory access time includes

both cache hits and cache misses (Figure 3.5b) so,

_3(1) +3(1+10)

bowe (UMD = 1) s = 6 cycles 15)
Cache Access Cache Access
Reference Time Reference Time
Miss 11 Hit 1
Miss 11 Miss 11
Miss 11 Hit 1
Miss 11 Miss 11
Miss 11 Hit 1
Miss 11 Miss 11
a)IMD,.=0 b) IMD,,, =1

Figure 3.5 - Example of Worst Case IMDs
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Since hard real-time designs are limited by the worst case effective memory
access time, t.,.. should be reduced. This requires the worst case inter-miss

distance, IMD,,. be increased since,

t =1+ N — cycles 1
e IMD  +1 (16)

This t,, . will then determine the overall worst case program execution time. The
worst case IMD value is determined by the smallest IMD value in any distribution.
For example, if a single occurrence of IMD=0 exists in a distribution of 100,000
IMD values, then IMD,,.=0 (although the weighted average of all IMD values -
would be greater than zero).

The effects of IMD values on program execution time are shown in Figure
3.6. This figure shows the program execution times measured by Koopman and
previously illustrated in Figure 1.2. When the cache is enabled, multiple IMD
values occur and as shown, execution times vary drastically. The largest execution
time, 272 cycles, is caused by the worst case (smallest) IMD value, while the
fastest execution time, 148 cycles, is caused by the best case (largest) IMD value.
A goal of this research can be visualized then as developing techniques that force
the upper limit program execution time (272 cycles in Figure 3.6) as far to the left

as possible (by reducing t., ).
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Figure 3.6 - Improve Execution Time by Eliminating
Small IMD Values [KOOP93] (©1993 Miller Freeman,
Reprinted with Permission)

Figure 3.7 shows the effects of eliminating subsequent worst case IMD
values verses t. .. Note the drastic reduction in t... levels as a result of
eliminating IMD values of d, 1, and 2. Thereafter, improvements in the reduction
of t,, . are less pronounced. From this point of view, improving the distribution
rather than the frequency of cache misses is of primary concern. A distribution

with smaller IMD values eliminated (with possibly an increased number of large

IMD values) is preferred since the worst case execution time is limited by the
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smaller IMD values. Research described in this dissertation focuses on eliminating
IMD=0, 1, and 2. Elimination of IMD=0 is the primary concern,? followed by
the elimination of IMD=1, IMD= 2. As shown in Figure 3.7, the elimination of
small IMD values provide the greatest decrease in t,,... and will result in reduced
program execution times.

It is interesting to note that while decreasing t, .. (and the subsequent
program execution time), the average program execution time may not change a
significant amount. This is because the occurrence of worst case conditions is
generally an infrequent event compared to the vast majority of program executions
so the value of IMD,,, may not change considerably. However, to the hard real-
time designer, this infrequent occurrence of worst case conditions is of primary
concern and should be used as the “design point” for scheduling tasks. As a
result, by controlling the occurrence of specific IMD values, the real-time system
enjoys improved worst case performance in addition to excellent average
performance. Methods to control these IMD values are described in Chapters 4

and 5.

2 This is because IMD=0 is the worst case, and limits overall cache
performance. Once this IMD value is eliminated, then JMD=1 becomes the worst
case, then IMD=2, etc.
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3.5 Cache States: Miss Reload Transients and Modes of Operation

During typical program execution, the cache may be viewed as being in one
of two modes, or states - normal algorithm execution (steady state) where
infrequent cache misses occur, or the transient state where the majority of cache
misses occur. The latter state is caused by the generation of cache reload
transients. These transients are characterized by several successive cache misses
and are generally caused by cold starts, context switches, or other abrupt changes

in memory address locality. These transients cause the generation of multiple

34




Cache Miss

Transient
State

Memory
Instr/Data Available Latency

Figure 3.8 - State Diagram for Normal Cache Operation

small IMD values. Cold starts result when the cache is empty due to the start of
a program (when the hardware is first initialized or following a cache flush). This
situation typically causes many successive cache misses until the program and
relevant data are loaded into the cache. Context switches occur when new tasks,
or programs, are invoked. Until the new code and data is loaded into the cache,
repeated misses will occur [THIE87]. Abrupt changes in address locality can also
be caused by subroutine or function calls in address space outside of the limits
currently resident in the cache. The state diagram for typical cache operation is
shown in Figure 3.8. During the steady state, only large IMDs occur. Small IMD
values (0, 1, etc.) are generated in the transient state. By illustrating the operation
of the cache in this way, possible solutions can be examined to ensure the cache
is (or appears to the processor to be) in the steady state at all times.

Using the state diagram in Figure 3.8, designing a more predictable cache

can be approached in two ways. First, the behavior of the memory subsystem
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Figure 3.9 - No Return Path to Transient State

could be modified so that once in the steady state, there are no possible return
paths to the transient state. After an initial transition to the transient state during
program start-up, a more predictable cache would then result. This is illustrated
in Figure 3.9. The second approach is to "mask" the transient state so the
processor "thinks" it is always in the steady state. This can be accomplished by
modifying the characteristics of the cache or by modifying the system architecture
that supports the cache and processor such that the transient state is not experienced
by the processor (even during program start-up). As a result, cache miss reload
transients can be made “transparent” and “hidden” from the processor, resulting
in a significant reduction of small IMD values. The resulting state diagram is

shown in Figure 3.10.

36




Cache Miss ~,-====+ “
(masked)

Cache
Hit
State ;

Instr/Data Available
Figure 3.10 - State Diagram for Masking Transient State

37




Chapter 4 Modification of Cache Parameters

4.1 Introduction

The purpose of this portion of the dissertation is to develop some basic
relationships between IMD behavior and cache parameters, as well as assess the
effects of various design parameters on cache performance as a function of IMD.
It must be noted that since cache memory performance is dynamic, its performance
may differ depending on the program being executed. However, the program
benchmarks used in this research are typical of those used in embedded real-time
systems and accurately reflect real-time cache performance. Therefore, the general
relationship established between cache parameters and IMD distribution resulting
from analysis based on these program benchmarks is considered typical of
embedded real-time applications.
4.2 IMD Behavior vs Modification of Cache Parameters

During this part of the research, the effect of cache organization on IMD
behavior and the resulting IMD distribution is examined. Cache parameters
including cache type and cache size, block (line) size, and cache associativity are
varied, and subsequent IMD distributions are examined. Increasing the block
size, for example, may reduce the frequency of small inter-miss distances and

change the “shape” of the IMD distribution. Such a change may result in a greater
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number of large IMD values and a lesser number of small IMD values. This, as
previously shown, results in a smaller worst case effective memory access time,
thus enhancing overall system performance by increasing processor utilization.
Initial simulation efforts focused on modifying four primary cache
parameters: cache type (unified or split)3, cache size, block size, and associativity.
These parameters were chosen since they have the most dramatic impact on
performance. Other parameters such as the policies for block placement (LRU,
etc.), write-back/copy—back, and allocation could also be modified, but were found
after some trial simulations to have only secondary effects on the cache’s IMD
distribution. They were set to their respective default values by the simulator
(shown in the footnotes to Table D.1). Cache size was limited to 8k-128k.
Smaller cache sizes were also simulated (on a limited basis), but these did not
allow for satisfactory performance while caches larger than 128k did not show any
significant improvement in performance. As a result, cache sizes less than 8k and
larger than 128k were eliminated from further analysis. Table 4.1 summarizes the

various simulated cache configurations.

3 A unified cache stores both instruction and data while a split cache
physically consists of two separate cache memories - one used to store instructions
and the other to store data. For each simulation including a split cache, both
instruction and data caches are identical in size.
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Table 4.1 - Simulated Cache Parameters
Cache Cache Block II
Size Type Size Associativity
16 bytes 1,2, 4, 8, 16, 32, 64, 128, 256, 512
32 1,2,4,8, 16, 32, 64, 128, 256
64 1,2, 4,8, 16,32, 64, 128 i
Unified ‘
8k bytes and Split 128 1,2,4,8,16,32, 64
256 1,2, 4,8, 16, 32
512 1,2,4,8,16 it
1024 1,2,4,8
16 bytes 1,2, 4,8, 16, 32, 64, 128, 256, 512, 1024
32 1,2, 4,8, 16, 32, 64, 128, 256, 512 1
64 1,2, 4,8, 16, 32, 64, 128, 256
16k bytes | Umified |50 1,2, 4,8, 16, 32, 64, 128
yt'e a.ﬂd Split 9 ? ] 9 ’ ’ ’
256 1,2, 4,8, 16, 32, 64
512 1,2,4,8, 16, 32
1024 1,2,4,8,16
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Table 4.1 (continued) - Simulated Cache Parameters
Size Type Block Associativity
16 bytes | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
3 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
64 1,2, 4, 8, 16, 32, 64, 128, 256, 512
32k bytes ag(‘;iisi;gt 128 1,2, 4, 8, 16, 32, 64, 128, 256
256 1,2, 4, 8, 16, 32, 64, 128 |
512 1,2, 4,8, 16,32, 64 |
1024 1,2, 4,8, 16,32 |
l6bys | 1124816 3362;: 128, 256, 512, 1024, “
2 |1,2,4,8, 16,32, 64, 128, 256, 512, 1024, 2048 |
, 64 1,2, 4,8, 16, 32, 64, 128, 256, 512, 1024
6k bytes | o ggﬁt 128 1,2, 4, 8, 16, 32, 64, 128, 256, 512
256 1,2, 4, 8, 16, 32, 64, 128, 256
512 1,2, 4, 8, 16, 32, 64, 128
1024 1,2,4,8, 16,32, 64
lotyes | 124816 335,?69162,88,129526’ 512, 1024, "
“ 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, Jl
2048, 4096
sk | Unified 64 | 1,2, 4,8, 16,32, 64, 128, 256, 512, 1024, 2048
bytes | andSplit | ;g 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
256 1,2, 4, 8, 16, 32, 64, 128, 256, 512
512 1,2, 4, 8, 16, 32, 64, 128, 256 |
1024 1,2, 4, 8, 16, 32, 64, 128 |
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4.2.1 IMD Evaluation Methods

Several methods exist to evaluate the performance of cache architectures
including hardware monitoring, analytical methods, and simulation [LAHA88].
For this research, trace driven simulation was chosen due to its efficiency and
flexibility. Multiple cache simulations were performed and focused on modifying
cache parameters and examining the resulting effects on the IMD distribution.
Software was written to automate much of this process so that exhaustive
simulation of possible cache configurations could be conducted efficiently. The
general steps of this method are shown in Figure 4.1. Once a real-time benchmark
program is compiled into binary (executable) format, an input data file is randomly
generated (to ensure independent trials). The program is then executed using the
data file, and a record of both instruction and data addresses are generated or
“traced.” The instruction and data addresses traces, together with specific cache
parameters are used as inputs to the cache simulator which outputs raw cache
activity and performance information. IMD data is then extracted from this output

and is plotted in histogram format.
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Figure 4.1 - Cache Simulation and Evaluation Process

The simulator chosen to simulate cache designs is Dinerolll written by

Mark Hill. It was selected due to its widespread use and availability [KIRK90],

[LIU93]. The simulator reports the behavior of one or more alternative cache

designs in response to an input program trace provided byAthe user and specified

cache parameters.4 Cache parameters (e.g., block size, associativity, etc.) are set

with command line options [DINE94]. A unified cache (instructions and data

cache together) or split cache (separate instruction and data caches) can be

simulated. Additional details on Dinero III may be found in Section D.3 of

Appendix D.

4 Program traces were generated using the Quick Profiling and Tracing
System (QPT), described in Section D.2 of Appendix D.
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4.2.2 Program Benchmarks

To properly evaluate cache designs, two “benchmarks” programs were used
to assess performance. These two programs, SHUTTLE.c and LRCprl.c, were
chosen due to several factors. First, they were both written in the C programming
language, so they could be modified if necessary and easily ported to the
workstation environment (Sun SPARC with SunOS UNIX operating system). In
addition, they both were used in previous academic research studies to evaluate
various aspects real-time systems [HELL84]. Finally, they were small enough in
executable size (approximately 144k and 152k bytes) to represent a typical real-
time program in an embedded system.

SHUTTLE.c controls a real-time decision system on the NASA Space
Shuttle called the Cryogenic Hydrogen Pressure Malfunction Procedure of the
Space Shuttle Vehicle (SSV) Pressure Control System. It is invoked in every
monitor-decide cycle to diagnose the condition of the Cryogenic Hydrogen
Pressure Control System and to give advice for correcting the diagnosed
malfunctions. This program was slightly modified to reduce the number of
“artificial” function calls. The program uses a number of printf statements to print
results to staﬁdard output (the screen). However, when implemented, the more

likely output would be some type of actuator receiving commands from an output
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port of the computer. These would likely involve OUT assembly language
commands, which wouldn’t require any references to libraries (printf function
calls). The intent is to avoid artificially introducing small IMD values. Input
commands using scanf function calls were not modified since there was no way to
inject data into the program without them. However, the likely scenario would
involve the use of IN assembly language commands. SHUTTLE.c requires a binary
input file of 31 lines, each consisting of a single binary digit. The pattern of
binary values indicates the status of simulated cryogenic hydrogen pressure sensors
aboard the SSV. Any random pattern results in an output of pressure sensor-
readings until a fixed point is reached. Using a random input file, a program trace
was generated.

The LRCprl.c program models the Local Reactivity Controller (LRC) of
a nuclear reactor. The LRC controls the reaction in the reactor core by moving
control rods in and out of the core. The actual movement of the rods is actuated
by stepper motors which are driven by electrical pulses controlled by the LRC. An
electrically activated brake is also used with each control assembly. The brake
prevents the heavy control assembly from moving into the core when the stepper
motor is not energized. The electrical pulses required by the stepper motors are

provided by a power source and are distributed by the rod selector. The selector
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ensures only one stepper motor is connected to the power source at any time. The
purpose of the program is to detect single failures in each of the active pieces of
equipment controlled by the LRC. LRCprl.c requires an input file of 10 integers,
each on a separate line. Each integer simulates sensor inputs that monitor
equipment controlling the movement of control rods. Program output differs
depending on whether or not the equipment status data indicates failure. Using two
sets of data (indicating successful equipment status as well as equipment failure),
program traces were generated.

4.2.3 Simulation Results

Each simulation run resulted in a substantial amount of data. Portions of
the data were plotted in three forms: 1) the total number of all IMD occurrences
versus their respective frequency (IMD distribution), 2) the ﬂumber of occurrences
(count) of IMD=0, 1, and 2 versus associativity for a fixed block size, and 3) IMD
count versus block size for a fixed associativity. The IMD distribution for a
typical simulation run is sho§vn in Figure 4.2 and clearly resembles that illustrated

by Volmand and Hovel (see Figure 3.3).

46




1200

g
2 1000 —
A
8
§ 800
5
8
© 600
o
)
§ 400
=
g
o 200
2
0 1 — /I\ ——- |
0 10 20 30 40 50
Inter-Miss Distance (IMD)

Figure 4.2 - IMD Distribution, SHUTTLE.c Benchmark,
Unified Cache Size=16k Bytes, Block Size=16 Bytes,
Associativity=1

Tables 4.3, 4.4, 4.5 and E.1 through E.30 list the results for IMD= 0, 1
and 2 count and the corresponding cache size, block size, and associativity for the
SHUTTLE.c benchmark program. Tables E.31 through E.60 show the IMD count
for the LRCprl.c benchmark when input data indicating successful system status
is used (LRCprl.c.ok). Tables E.61 through E.90 show the IMD count for input
data indicating system failure (LRCprI.c.fail). Associativity values of 1 through
16 are shown for both programs. Direct mapped (1-way associative) caches are

faster than multi-way associative caches due to logic path design requirements.
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Therefore, it’s desirable to determine how direct mapped caches behave as a
function of IMD values. However, due to less flexibility in placing blocks, direct
mapped caches can force necessary blocks out of the cache resulting in “conflict”
misses. Multi-way associative caches help avoid this problem, but are slower since
additional hardware is required (see Appendix A). Degrees of associativity greater
than 16 are not shown because the resulting IMD counts reach an asymptotic value
for larger degrees of associativity.

Each of the tables represent the total count of IMD values (0, 1, and 2) for
a single execution of the benchmark program, given specific cache design
parameters. Table 4.2 for example, illustrates the total number of occurrences of
IMD=0 values when executing the SHUTTLE.c program on a 16k byte cache.
Both unified and split cache configurations are used, while varying the block size
between 16 and 1024 bytes (shown vertically) and the degree of associativity
between 1 and 16 (shown horizontally). The same program trace is used for each
measurement, so comparisons of cache behavior under the same program execution
conditions can be made. Table 4.3 is a variation of Table 4.2 with the IMD count
for individual elements of a split cache (instruction and data caches) shown.

Simulation output data is provided in two “views.” These correspond to

how the cache memory’s performance is “seen.” The first view of cache
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performance is that seen by the processor, and those IMD values are shown in
Tables 4.2, 4.4, 4.5 and E.1 - E.15, E.31 - E.45, and E.61 - E.75 in Appendix
E. The processor only sees the cache as part of the memory subsystem. The
processor requests information, and the memory subsystem delivers it. The
processor has no idea about the specifics of the cache - size and type, block size,
and associativity. It only sees cache hits or misses. The type of cache - unified
or split - is transparent to the processor. For example, if a split cache is used and
the sequence of events is - instruction cache hit, data cache miss, instruction cache
hit, data cache miss, instruction cache miss - the processor sees an IMD=1 even
though the IMD experienced by the data cache itself is zero. The second view of
cache performance is that experienced by the individual cache components. In the
case just described, the instruction cache will experience IMD=1 while the data
cache will experience IMD=0. These IMD values are shown in Tables 4.3, E.16 -
E.30, E.46 - E.60, and E.76 - E.90.

It is clear from the data in Tables 4.2, 4.4, 4.5 (and Appendix E) that by
increasing the block size and degree of associativity, the IMD count for IMD=0,
1, and 2 is reduced in most cases. Similarly, as cache size is increased, the
corresponding IMD count is also reduced. Caution should be exercised however,

as the IMD=0, 1, and 2 count begins to increase after the block size achieves a
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specific value. This is particularly apparent in the case of direct-mapped caches.

For IMD=0 count, 1 was subtracted from the cache simulator output count
due to a special case. Dinerolll assumes an occurrence of IMD=0 for the first
fetch from memory (on a cold start). However as defined, IMD is the distance
between consecutive cache misses, so this occurrence of IMD=0 is disregarded.

Prior to actual simulation, it was theorized that IMD=O occurrences would
be more difficult to eliminate than an IMD value of 1 or 2 since IMD=0
occurrences are generally caused by sudden changes in address locality where code
or data may not be located at sequential memory addresses. However as the data
from the tables show, this is not always the case. In fact it appears for example,
that while a similar decrease in IMD count occurs for IMD=1 and 2 as block size
is increased, elimination of IMD=1 and 2 occurrences becomes more difficult.
Also, as is the case for IMD=0, other than for associativity=1, there appears to
be little difference in the IMD=1 and 2 count for various multi-way associative
caches for large cache and block sizes. In addition, for all cases there appears to
be an “asymptotic” value for both block size and associativity at which no
additional reduction in IMD=0, 1 or 2 count occurs regardless of how much block
size and degree of associativity are increased. Since eliminating IMD=0 results

in gaining the most performance (see Figure 3.7), the relationship between the
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IMD=0 value and the cache architecture is of primary concern. If the occurrence
of IMD=0 can’t be eliminated, efforts in eliminating IMD=1, 2, ... are fruitless.
This is because IMD =0 is the worst case, and limits overall cache performance.
Once this IMD value is eliminated, then IMD=1 becomes the worst case, then

IMD=2, etc.
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Table 4.2 - IMD =0 Count, 16k Unified/Split Caches, Benchmark: SHUTTLE.c

Block Associativity
Size Unified Cache Split Cache
®ytes) 1 2 4 8 16 1 2 4 8 16
16 267 119 107 100 9 178 97 97 96 95
32 115 49 44 37 34 38 32 35 31 30
|| 64 28 21 21 16 17 15 11 12 10 10
128 43 11 9 11 11 7 6 5 7 5
II 256 71 4 2 4 4
ll 512 510 5 0 2 2
I! 1024 | 2312 0 0 0 0

II Table 4.3 - IMD=0 Count, 16k Instruction/Data Caches, Benchmark: SHUTTLE.c

Associativity
Block
Size Instruction Cache Data Cache
€S
(bytes) 1 2 4 8 16 1 2 4 8 16
16 129 85 85 83 82 112 97 97 97 97 ||

32 26 24 24 23 22 24 10 10 10

n |
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Table 4.4 - IMD=1 Count, 16k Unified/Split Caches, Benchmark: SHUTTLE.c

Block Associativity
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 465 156 148 129 124 271 138 132 121 121
32 165 70 69 59 63 97 64 62 54 53 “
64 106 39 36 34 35 33 32 31 24 26
128 60 11 10 10 11 18 8 8
256 53 6 6 7 8 16 5 4 5 5
512 116 2 1 1 2 34 1 1 1 1
1024 208 8 2 2 2 60 é 1= é __d

Table 4.5 - IMD=2 Count, 16k Unified/Split Caches, Benchmark: SHUTTLE.c

Block Associativity
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 466 197 192 166 166 273 171 169 158 158
32 144 78 70 65 62 100 59 57 53 53
64 45 41 35 26 27 27 21 19 20 19 I
128 33 34 31 11 12 20 8 8 8 9 "
II 256 20 8 7 6 8 15 5 5 5 6 “
Il 512 100 14 13 7 6 18 4 4 5 5 “
1024 240 16 20 6 40 18 4 5 5 A
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The findings of these simulations suggest that it is possible to eliminate’
specific instances of IMD values (i.e., IMD=0) by carefully choosing cache
parameters. In eliminating such IMD values, the following general guidelines are
presented:

1) Large caches (> 64k bytes for these benchmarks) are required.

2) Large block sizes (> 512 bytes for these benchmarks) are required.

3) Split caches generally perform better than unified caches, especially for

direct mapped caches (associativity =1).

4) Multi-way cache associativity generally ‘allows smaller cache and block

sizes to be used; in addition, they offer better performance if unified caches

are implemented.

5) If large, split caches are implemented (>16k bytes), direct mapping

generally provides equivalent reduction of JMD=0 count as multi-way

associative caches. Therefore, direct mapping may be used.

6) In an attempt. to eliminate IMD values other than 0, additional

techniques (in addition to modifying cache parameters) are required.

When examining the performance of individual cache types (instruction and
data), some interesting patterns appear. As Table 4.2 shows for the case of cache

block sizes of 512 and 1024 bytes for the split cache (shaded cells in table),
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IMD=0 count values can be eliminated for 2-, 4-, 8-, and 16-way associativity and
greatly reduced for 1-way associativity. These IMD values are seen by the
processor. However, when individual instruction and data caches are examined in
Table 4.3, no IMD =0 values occur in the instruction cache, but several exist for
the data cache.> This leads the following conclusions for split cache architectures:
1) While the processor sees few, if any IMD=0 occurrences, there are
many cases of J[MD=0 for the data cache. This indicates that data cache
experiences multiple consecutive misses, each separated by at least one
successful reference to the instruction cache.
2) Retrieving data from the data cache is more difficult than retrieving
instructions from the instruction cache. This is clearly evident by
examining the IMD =0 values for each simulation run. While eliminating
IMD=0 values for the instruction cache is possible in many cases,
eliminating IMD=0 for the data cache was not observed.
3) The principle of spatial locality favors instruction caches. This is
illustrated in each of the tables listing instruction and data cache simulation

results. Instructions tend to flow “in-line” while data tends to be dispersed

> Additional split cache data may be found in Appendix E.
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in memory leading to a greater number of cache misses.5

4.3 Processor-Bus-Cache Topologies

The results of the simulations discussed in the previous section lead to some
additional architectural concerns not previously anticipated. For example, although
the processor “sees” few, if any JMD=0 values for the 16k split cache example
(shaded cells of Table 4.2), many actually appear for the data cache when the
instruction and data caches are examined separately (shaded cells of Table 4.3).
The processor views a single bus architecture to the split cache, shared by both
cache memory components. However, if the instruction and data caches are
examined individually, the processor-cache connection appears as a dual bus - one
bus for the instruction and another for the data cache.” An example is shown in

Figure 4.3.

6 “In-line” instructions are loaded in sequential memory locations and are
read (and executed) in-order. In general, data is dispersed in memory. However,
there are some program applications that exhibit excellent spatial locality for data
due to extensive use of arrays.

7 During simulation runs, the cache simulator models a single bus
architecture connecting the processor and cache.
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IMD = 0 Count

—3» Instr Cache

2) Processor (—0— ﬁdggta

— 3 Data Cache

0
<@— Instr Cache
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& Data
b) Processor

(..3_> Data Cache

Figure 4.3 - IMD=0 Count for 16k Split
Cache, Block=512, Assoc=2; a) Single Bus,
b) Dual Bus

As a result of these findings, an analysis of various processor-bus-cache
topologies was performed to determine their effect on systém performance and to
choose the topology with the most desirable worst case performance. These effects
are described in Section 4.3.2 and are examined in terms of t., .., Clock Cycles Per
Instruction (CPI), and Speédup, S.

4.3.1 Performance Metrics

The effects of processor type (serial or pipelined), bus type (single or dual)

and cache type (unified or split) have a significant impact on performance of real-

time systems. Until this point of the research, architectural performance focused
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on t,, ., and methods to reduce it. However, the following analysis shows that (.
~ does not always fully describe the r_eal-time system’s performance. Although
reducing t., . is of primary concern to the memory system, the processor-bus-
cache topology greatly influences the predictability and performance of the real-
time system (and the prefetch architecture presented in Chapter 5). For example,
when dealing with pipelined processors, CPI should be examined since stages of
program execution may be overlapped. The pipeline processor’s ability to execute
pipeline stages concurrently allows significant performaﬁce advantages in terms of
CPI for most cases. To evaluate the effects of cache organization and memory
system architectures on performance, system speedup, S, can be used as a means
of measuring enhanced performance.

CPI and S are two attractive metrics because they include the effects of
processor type, bus type, and cache type. Since all possible program execution
delays associated with a system’s processor-bus-cache topology are included in CPI
and S, they can be used as good overall measures of the system’s predictability or
performance. Since worst case program execution time is of primary interest, it
follows that expressions derived for CPI and S should also consider the worst case:
CPIL,. and S,,..

CPI,,. can be defined as
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maximum CPU cycles for program execution a7
total instruction count

CPI_ =
we

Since CPI,. depends primarily on the processor type, two expressions can be
derived for CPL,, - one based on a serial processor architecture, and the other for

a pipelined processor architecture.

For a serial processor, there is no parallel fetching of instruction and data,
and CPI is generally several cycles. It varies depending on the type of instruction
executed and the instruction mix (ALU vs data references). This value for CPI can

be stated as
CPI=CPU cycles +fetch instr delay +fetch data delay +run-time delays (18)

and can be simplified to

CPI_ (serial processor) = n +d_ + A cycles per instruction 19)

where 7 is the number of cycles associated with the various stages of the CPU, d,.
is the worst case delay associated with memory accesses, and A are any run-time
delays (branch delays, delays due to dependencies, etc.). The value for n depends
on the number of stages in the CPU as well as the instruction being executed,

while d is dependent not only on the instruction but also the memory system. The
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worst case memory delay, d,., is the sum of the time required to access
instructions during an instruction fetch and the time required to load or store data.

For the pipelined processor, each stage of the processor is overlapped so
instructions and data may be fetched during the same clock cycle. As a result,
more than one instruction may execute at any one time. CPI for the pipelined

processor case can be stated as

CPI = steady state + memory delays + run-time delays (20)

and can be simplified as
CPI__(pipelined processor) = §§ +d__ + A cycles per instruction (21)

The steady state, SS, assumes the pipeline is fully loaded and there are no
other delays, so SS is the minimum CPI value for that particular architecture,
usually equal to 1.0 for a non-superscalar processor. Memory delays include any
additional delay greater than the minimum assumed for the SS.® Run-time delays
include those caused by branches, data dependencies, etc.

Speedup, S, is a relative measure of system performance after

8 For the steady state, a memory access of one cycle is assumed, indicating
a cache hit.
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enhancements to a system have been made. It may be expressed as

execution time without improvement

S = (22)

execution time with improvement

While this is useful for determining the speedup of the overall system, it assumes
an execution time is known for all cases. A more useful measurement expresses
S in terms of the memory system’s t., .. BY using t.. .., S becomes a comparison
of two systems - one without any modification to the memory system (baseline
system) and one that includes techniques discussed in this dissertation (improved

system). System speedup then becomes

t ____ of baseline memory system
s - caA~WC (23)

t., v Of improved memory system

For example, the baseline’s worst case performance may assume there will be a
miss on every memory reference (worst case for performance, best case for
predictability) resulting in IMD,.=0. However, if a cache memory is included
along with other modifications, it may be possible to eliminate the occurrence of
IMD =0 values, leading to IMD,,.=1 for the improved architecture. As a result,
two values for t.,.,. can be calculated (assume 7=10 cycles for both cases). For

the baseline system (no cache)

t =T = 10 cycles 24)

ea-we
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For the modified memory system (cache included)

6, . =1+

ea—-wc 1 +1

= 6 cycles 25)

The reduction in t,,.,, for the improved system is 40% less than the baseline system

and results in the following speedup

_ 10 cycles _ 1.67 26)
6 cycles

This value for speedup illustrates how much processor utilization can be increased.
The number of tasks scheduled can be increased 1‘.67 times without missing any
real-time deadlines. Since real-time designers should plan for the worst case, and
many hard real-time designs include no cache, the baseline system should assume
a value of IMD,,.=0. The resulting value for speedup may be considered the
“worst case” speedup, or S,.. An accurate description for the worst case speedup

may be expressed as

_ Inax program execution time, no enhancements (base system)

e —— - @7)
max program execution time with enhancements
and may also be expressed in terms of CPI,, as
CPI (base system)
= (28)

**  CPI,_ (enhanced system)
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4.3.2 Analysis of Processor-Bus-Cache Topologies

The purpose of this analysis is to determine which topology exhibits the
most favorable worst case performance. For this analysis, the base cases include
the serial processor and pipelined processor systems with no cache. These were
chosen because they exhibit the worst case in terms of memory access time and
processor utilization and represent the design of choice for many current hard real-
time systems. Since worst case performance is of interest, the assumption should
be made that all instructions access data in addition to the instruction reference,
since these types of instructions take the longest to execute.” While this may be
unlikely from a programming viewpoint, this assumption considers the worst case,
and avoids any subjective guess as to the inStruction mix of ALU and data access
instructions and their respective effects on system performance.

In examining the performance tradeoffs associated with processor type, bus

type, and cache type, five cases are possible. Each are listed in Table 4.6.

® Memory reference instructions such as loads and stores require two
references to memory - one to fetch an instruction, and one to access the operand.
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Table 4.6 - Processor-Bus-Cache Topology Configurations |
Case Processor Type Bus Type Cache Type
1" Serial Single No Cache
2 Serial Single Unified or Split
3= Pipelined Single No Cache
4 Pipelined Single Unified or Split
5 Pipelined Dual Split
* Base case for the serial processor
** Base case for the pipelined processor

Case 1

Senal
Processor

Memory

Figure 4.4 - Case 1 Topology

Since there is no cache present in this architecture,

t =T cycles (29)

ea-we

where T is the time required to access main memory. Therefore, the memory

delay, d,,., is the sum of the delay to fetch an instruction and the delay to access




data during a LOAD or STORE. 1t follows that

|,
]

t, ., (instruction fetch) + ¢, (data access)
T+T 30)
2T cycles

we

t

From equation (19), CPI for this case can now be described as

CPI, (Case 1) =n + 2T + A cycles per instruction 31)

Because this is the base case for the serial processor, there is no speedup (S=1).

Case 2

Serial Unified or
Processor [ Split Cache ~<€—»| Memory

Figure 4.5 - Case 2 Topology

Since this architecture includes a cache (unified or split) t., .. is expressed as

bpwe =1 7 —r cycles (32)
e IMD _+1

As in Case 1, the delay d,, is the sum of the delays associated with instruction
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fetches and data accesses, so

d (data access)

wc

t”_wc(mstructmn fetch) + ¢

ea-wce

1+______._T + 1 + T

IMD,_+1 IMD,, +1 33)

= 2(1+—-—L——)T cycles
IMD +1

we

Therefore,

T
CPI_ (Case 2) = n + 2(1 +———) + A cycles per instruction
we MD_+1 y P (34)

The speedup for this architecture with respect to the serial base case (Case 1) is

CPI (Case 1)
S, (Case 2) = 2e = n+2T + A
CPI, (Case 2) n+2(l+ T y+A 35)
IMD _+1
Case 3
Pipelined
Pr%cessor < »| Memory

Figure 4.6 - Case 3 Topology

As in Case 1, since there is no cache present in this system, so
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t =T cycles (36)

ea-we

In addition, since there is only one bus, the IF (instruction fetch) and MEM
(memory access) stages of the pipeline can’t be overlapped in time. This forces
the steady state of the processor to be twice the longest cycle of any stage, such as
those accessing memory - IF and MEM. Since ¢,,.,, = T is the largest number of

cycles (for both the IF and MEM stages of the pipeline),

$§ = 2T cycles 37

Since there is no cache, no additional memory delays are required, so d,.=0.

Therefore equation (21) can be stated as

CPI,_ (Case 3) = 2T + A cycles (38)

Because this is the base case for the pipelined processor, there is no speedup

($=1).
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Pipelined |

Unified or

¥

Processor |

™| Split Cache [* Memory

Figure 4.7 - Case 4 Topology

A cache memory is included in this architecture, so as in Case 2,

e =17 T cycles (39)

IMD,_+1

Again, since there is only a single bus, the IF and MEM stages can’t both be active

at the same time, so the steady state again must be equal to twice the longest stage

(IF and MEM). However, since a cache is included, steady state CPI performance

assumes a cache hit for both instruction fetches and data accesses, each requiring

only one cycle (instead of T cycles). Therefore the steady state performance for

this architecture requires two cycles, and

$S =2 cycles (40)
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With the cache included, any additional memory delays, d,., can be described as

the sum of delays associated with an instruction fetch and data access to main

memory. Therefore,

T T
= + cycles

d
"  IMD, +1 IMD, +1

It follows that

T
IMD,, +1

we

CPI, (Case 4) =2 + 2( ) + A cycles per instruction

The speedup, with respect to the pipelined base case (Case 3), is

CPI_ (Case 3)
S, (Case 4) = = I"° v = 2T + A
ch( ase 4) 242 ( T y+A
IMD  +1
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Case 5 Split Cache

l""'"'"'"""""
]
- : Instruction | :
Pinclined 1 Cache !
ipeline 1 _
Processor : \ Memory
: CaChe 1
bemoeoo oo

Figure 4.8 - Case 5 Topology

In this architecture, the bus architecture allows access to the instruction and
data caches simultaneously, thereby overlapping the IF and MEM instruction

cycles of the pipeline. This allows a steady state CPI of one clock cycle, so

S§§ =1 cycle 44)

Since the IF and MEM stages overlap, the additional memory delay (required to
access main memory on a cache miss), d,., will be the maximum of 4, for an

instruction fetch and d,,. for a data access,

N
I

max {d__(instruction fetch), 4, (data access)}

we

{ T T } (45)
max ,
IMD,_(IF)+1' IMD  (MEM) +1

It follows that
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T
IMD_(IFIMEM) +1

CPI_ (Case 5) = 1+ +A cycles per instruction  (46)

where IMD,(IF/MEM) is the lesser of IMD,,. for an instruction fetch and IMD,,.
for a memory access. The speedup, with respect to the pipelined processor base

case (Case 3), is then

CPI_ (Case 3)
S (Case 5) = — - 21 + A
CPI__(Case 5) 1+ T AA @7
IMD  (IFIMEM) +1

To determine which of the five topologies exhibits the most favorable worst
case performance, each should be examined in terms of CPI, and S,.. All five
cases are summarized in Table 4.7 with example CPI,. and S,. values for
IMD,.=1 and 2. For the serial processor architecture, the obvious choice is to
include a cache memory - either unified or split - into the topology. However, for
architectures including pipelined processors, the choice of topologies is not as
straightforward. Cases 4 and 5 clearly provide a performance advantage over the
pipelined processor base case (Case 3), but to differing degrees. The dual bus
structure of Case 5 allows the IF and MEM stages of the pipeline to be overlapped,
thus reducing SS to one. However, this architecture also exposes potential

IMD,,.=0 occurrences for the data cache that might otherwise be hidden by
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instruction fetches (between successive data accesses) for a single bus architecture.
The Case 4 topology, although having a greater SS component than Case 5, is
more likely to see IMD,, values greater than zero,'® and as a result will have
smaller value d,,, components. However, as the CPI and S values illustrate, Cﬁse
5 allows faster execution time than Case 4, even for IMD,.=0. Therefore, the

Case 5 topology is chosen for the prefetch architecture presented in Chapter 5.

10 A5 illustrated in Tables 4.3, E.16-E.30, E.46-E.60, and E.76-E.90.
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Chapter 5 Prefetch Architecture Development

5.1 Introduction

Although the first stage of this research illustrates the ability to modify
IMD distribution (and resulting t.,.,. behavior) through selection of cache design
parameters, additional techniques are required to ensure the elimination of all
unwanted IMD occurrences. A prefetch architecture in conjunction with carefully
chosen cache parameters provides a way of “hiding” small IMD values and results
in predictable cache behavior of very high reliability. This prefetch architecture
prefetches required code and data from main memory and loads the cache before
it is actually referenced.!* This prefetching in effect, "hides" future cache misses
and ensures the processor doesn't waste a significant number of cycles waiting for
memory. This approach “masks” specific types of cache miss transients, and
follows the state diagram presented in Figure 3.10. The prefetch architecture
incorporates several published techniques developed by others during earlier
research on instruction and data prefetching [BAER95], [CHEN95], [CONT95],
[KIRK90], [KIRK91], [KLAI91], [LIU93], [McCR91], [MUEL94], [NOWI92],

[SMIT78], [SMIT82], [SMIT85],[UHLI95], [WOLF93]. The research described

11 This is in addition to the typical instruction prefetching that occurs when
the instruction unit prefetches instructions from the cache and loads them in a
FIFO instruction queue.
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in these references is based on attempts to improve average performance, not the
worst case. Since real-time systems execute a limited number of programs using
a priori knowledge about both the programs and environment, any prefetching
techniques should provide performance exceeding the average case. The added
predictability afforded real-time systems will only enhance the ability of
prefetching techniques in hiding cache misses, thus minimizing the worst case
effective memory access time. Since this earlier research is described extensively
in the stated references, development of individual prefétching techniques are not
illustrated here. Rather, their used is described, accompanied by specific
references to the appropriate literature.
5.2 Prefetch Architecture

A general block diagram of the prefetch architecture developed during this
research is shown in Figure 5.1, and its general operation is outlined in Figure 5.2.
Its basic components consist of the prefetch prediction logic (Section 5.2.1), a two-
level in-line instruction queue (Section 5.2.1.2), separate instruction and data

caches, and a load and store queue.’> Since most hard real-time applications are

12 The load queue is optional, and is based on the implementation chosen
for data prefetching. It is required for hardware prefetching (Fig 5.6), but not
necessary for software prefetching. A store queue is used to write data to the
slower main memory and prevents any wait states from being generated.
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generally limited to a specific set of tasks (application programs), an assumption
is made that all possible tasks that may be executed on the particular platform are
known ahead of time. This assumption of a priori knowledge provides the
architecture's control knowledge of the program’s logic path that will be executed
in the near future, thus allowing prefetching of required code and data.

The prefetch architecture implements the following previously published
techniques: 1) instruction and data prefetching from main memory (prediction
logic and prefetch control), and 2) selective “locking” or “freezing” of cache
lines/blocks to preserve necessary address space m the cache (cache control). In
addition, careful selection of primary cache parameters to lower or eliminate small
IMD values is also used. These three elements ensure that the information
required by the current (or future) executing program is located in the cache (and
queue) as needed, thereby avoiding occurrences of small IMD values. Large IMD
values, caused by transients such as infrequently accessed data, are not a concern
since they don’t affect the worst case effective memory accéss time.®> As a result,
they were not treated as primary design considerations. As illustrated in Chapter

4, elimination of IMD=0 is possible in many cases by carefully choosing the cache

13 1 arge IMD values generally don’t affect t,,.,. Since t.,.. is maximized by
the smallest IMD value.
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size and type, block size, and associativity. However in other cases, the
elimination of IMD=0 (and other small IMD values) are more difficult and will
be addressed by incorporating instruction and data prefetching, and cache
partitioning.
5.2.1 Prediction Logic and Prefetch Control

Prefetching instructions and data from main memory and loading them into
a cache greatly improves the chances the required information will be available to
the processor when required. In his analysis, Smith showed that by including
prefetching, miss ratios were reduced 60% and 50% for instructions and data
respectively [SMIT85]. This prefetching in effect “hides” or “preempts” possible
cache misses by anticipating the processor’s needs. As a result, these “misses”
occur in advance of the processor’s reference to memory. Since these prefetching
actions are not seen by the processor, they are effectively “masked” from its view.
The processor sees the cache as always being in the steady state (no or infrequent
misses) as previously illustrated in Figure 3.10.

Since many cache miss reload transients are caused by “cold starts” (i.e.,
empty cache), it’s imperative to pre-load portions of the cache with program .code
and/or data. Since the compiler has a priori knowledge about the programs to be

executed, the first n lines of program code and data may be pre-loaded during
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processor initialization but before program execution. The number of lines, 7, is
determined by the latency of the memory system. For example, if the memory
system requires ten cycles to initially respond to the processor, then enough lines
of code and to cover the ten cycle latency must be pre-loaded in to the cache. This
avoids any reload transients, and ensures that the prefetch logic has enough time
to initiate any prefetching actions to avoid future cache misses.

An integral part of the prefetch architecture is the prefetch algorithm that
determines what and when to fetch from main memory and the method in which
the algorithm is implemented. The prefetch algorithm must be carefully chosen
if machine performance is to be improved rather than degraded. Too much
prefetching can “pollute” the cache - prefetched lines from main memory may
displace other lines from the cache which are more likely to be referenced in the
immediate future [SMIT82]. It can also tie up the address and data buses
unnecessarily causing the processor to wait for bus availability. Too little
prefetching leads to cases where cache misses occur frequently, leading to the

generation of small IMD values.
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Load Cache with
Initial Lines of
Code for Each Task/
Function/Subroutine
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Observe Currently
Executing Task
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Prefetch Required
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Task/Function/Subroutine

~ Figure 5.2 - General Flow Diagram for Prefetch
Architecture (Prediction Logic and Cache Control)
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5.2.1.1 Prefetch Algorithms and Methods of Implementation

There are several prefetch algorithms available, as well as methods in
which to implement them in hardware and software.!* Of the algorithms available,
it appeared as a result of initial investigations that a hardware controlled
implementation using the Always Prefetch algorithm or software controlled
selective prefetching would provide the best opportunity for the reduction of
IMD=0, 1, and 2 occurrences.

The Abways Prefetch algorithm causes block i+1 to be prefetched whenever
block i is referenced. This type of prefetching is simple to implement and can be
very effective for prefetching sequential instructions. To determine the effect of
the Always Prefetch algorithm on the IMD distribution, several simulations were
performed that compared no prefetching (or Fetch on Demand (on a cache miss))
to the Aways Prefetch algorithm for both instructions and data. It was anticipated
that the number of cache misses would be reduced when the Always Prefetch
algorithm was used, but how the distribution of those misses would be affected was
unknown. A sample of the data for a 64k byte cache is shown in Table 5.1. The

remaining results of this series of simulations can be found in Section B.5 in

14 prefetch algorithms and implementation methods are discussed in detail
in Appendix B.
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Appendix B.
II Table 5.1 - IMD=0 Count, 64k Unified/Split Caches, Benchmark: SHUTTLE.c
Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP
16 103 110 91 97 90 96 90 96
| 32 | o | 4 | 36 | 37| 3¢ | 36 | 3¢ | 35
II 64 17 17 11 10 10 9 10 9
128 8 11 3 3 3 2 3 2
256 4 7 0 0 0 0 0 0
512 0 9 0 0 0 0 0 0

NP: No Prefetching (Fetch on Demand), AP: Always Prefetch

As the data in the table illustrates, the implementation of the Always

Prefetch algorithm actually degrades IMD =0 performance in several cases. This

phenomenon is likely caused by the effects of “polluting” the cache with

unnecessary blocks from memory and displacing needed blocks from the cache.

For example, as illustrated in Table 5.1, if a 16 byte block is implemented, an

IMD =0 count of 103 results when no prefetching is used and 110 occurs when the

Always Prefetch algorithm is implemented. However, in analyzing the simulator

output for cache misses (Table 5.2), the number of total misses was reduced from
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953 (no prefetching) to 364 (Always Prefetch). This implies that the total number
of misses was reduced by using the Always Prefetch algorithm, but those misses
that did occur are clustered closer together - hence the greater IMD=0 count. This
is likely the result of conflict misses caused by displacing needed code and data by

information brought into the cache during every memory reference.

Table 5.2 - Total Cache Misses, 64k Unified/Split Caches,
Benchmark: SHUTTLE.c
Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way

Ne | ap [ ne | AP | Ne | ap | Np | AP
|| 16 | 953 | 364 | 907 | 318 | 910 | 333 | 893 | 300
u 322 | 638 | 315 | s64 | 230 | ss2 | 260 | s48 | 217 Il

64 500 309 372 202 418 240 353 178

128 392 248 265 127 302 162 240 96
256 319 298 190 149 214 216 152 120
512 259 326 139 159 163 251 95 118

NP: No Prefetching (Fetch on Demand); AP: Always Prefetch

Similar findings occur for most cases: a smaller number of cache misses result
when prefetching is used, but an equal or larger number of IMD=0 and 1 values

occur. These findings support the position that prefetching via the Always Prefetch
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or one of its derivatives (i.e., Tagged Prefetching) should not be used. Rather, a
more selective approach should be chosen for prefetching instructions and data.
The decision not to implement the Always Prefetch algorithm is based
primarily on the IMD=0 and 1 data provided by the simulator. However,
architectural factors also support the decision not to use Always Prefetch.
Although initial investigations in the literature showed some promise in using the
Always Prefetch algorithm, the findings are based on computer architectures of
non-pipelined processors and slow memory subsystems. As a result, unused
machines cycles are usually available that allow additional accesses to the cache -
and main memory, (with the accompanying increase in traffic on the address and
data buses). For example, the use of the Always Prefetch algorithm with a
blocking cache requires two cache cycles and at least one memory cycle for each
instruction or data fetch. One cache cycle is required to access the needed
information and another to load the prefetched block. At least one memory access
cycle is also required to load the prefetched block in addition to a memory cycle
for any cache miss. The effects of these additional access to the cache and main
memory on every memory reference add a significant amount of overhead to the
effective memory access time and can significantly degrade performance. This is

especially true with many modern pipelined processors with CPI values
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approaching 1.0. Two alternative techniques are used to reduce the IMD=0, 1,
and 2 count by selectively prefetching code and data.

The first technique is to simply increase the cache block size, thus fetching
a larger number instructions and data from memory on a cache miss. As shown
in Table 5.1 (and related tables in Appendix E), by increasing the block size, the
occurrence of IMD=0 values is reduced in virtually all cases. For example, as
shown in Table 5.1, by increasing the block size from 32 to 64 bytes, the IMD=0
count for a direct-mapped unified cache is reduced from 41 to 17. Likewise, by
increasing the block size from 128 to 256 bytes for a 2-way associative
implementation, the occurrence of three IMD =0 values are eliminated. Fetching
larger blocks actually implements prefetching on a cache miss by bringing into the
cache more information than necessary, thereby prefetching. code and data located
“close” to the information currently being used. This technique is useful for
prefetching both instructions and data. This differs from the Always Prefetch
strategy because prefetchiﬁg is only initiated on a cache miss - not on every
memory reference as is the case for Always Prefetch algorithm.

The second technique, used only for prefetching data, is based on
programmer/compiler directions or by virtue of a decoded LOAD instruction. Two

implementations are available: software and hardware controlled. Software
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controlled prefetching is implemented by the compiler or programmer and initiates
a prefetch only when instructed via software. This method is discussed in more
detail in Sections 5.2.1.4.1 and in Section B.3 of Appendix B. The hardware
implementation is that proposed by Eickemeyer and Vassiliadis and uses hardware
to decode a LOAD instruction early in the decode cycle [EICK93]. Once
identified, data prefetching is initiated automatically. This technique is discussed
in more detail in Section 5.2.1.4.2.
5.2.1.2 Prefetching Instructions from Main Memofy

Prefetching instructions from main memory is straightforward in most
instances. Instructions are generally stored in sequential memory locations and
execute “in-line” (sequentially). As a result, prefetching instructions generally
requires only the knowledge of the currently executing instruction. Once that is
known, the next (one or more) instructions can be fetched from sequential memory
locations. Due to the spatial locality of in-line instructions, prefetching by
increasing block size is best suited for prefetching instructions in this architecture.
When an instruction is fetched from memory on a cache miss, the next one or
more instructions are also (pre-) fetched. The choice of ideal block size is a
function of the IMD distribution, and is selected for the elimination of IMD=0

occurrences.
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While prefetching through increased block size works very well for in-line
instructions, it is ineffective for prefetching instructions that may be located outside
the address boundaries of the instruction space accessed by currently executing
instructions. This may occur as the result of calling functions or subroutines.
Subsequently, the required instructions are not found in-line and incorrect
instructions may be prefetched from main memory. Traditionally, this problem
has been addressed through the use of a “branch target buffer/queue” or some
other method of fetching target instructions and placing them' in a secondary
instruction cache or queue. However, this technique requires that the transfer in -
program control be experienced at least once, so the relevant program data may be
loaded into the buffer or queue based on historical information about the branch
or subroutine. In addition, these methods are based on statistical analysis and
don’t guarantee cache behavior. As a result, they may not be attractive to the real-
time designer. Predictable program execution time requires that the target code be
as accessible as the in-line code (in terms of access time). To circumvent this
problem, the first zn lines of the branch target instruction stream (function or
subroutine calls) are loaded into the cache where they will be available for
immediate use, much like in-line code would be. This avoids any IMD=0

occurrences associated with the start of a function call or branch routine. The in-
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line instructions executed immediately after returning to the main program from
the target code aré also pre-loaded to avoid a “cold-start” of the cache that could
result from needed information being displaced by target code or data. 15 This can
be accomplished a priori by using the compiler to identify the required branch
target code and in-line code following the target call. Prefetching of subsequent
instructions required for target routines will occur as described above (prefetch via
a larger block size) once the initial target code is executed.
5.2.1.3 Prefetching Instructions from the Instruction Cache

To enhance the performance of the processor, an “In-Line Instruction
Queue” is placed between the processor and the instruction cache. Its purpose is
to store instructions “in-order,” allowing the processor immediate access to them.
The queue works on a First-In-First-Out (FIFO) basis, meaning that the
instructions loaded into the queue first are also the first to exit. In addition to
lining up instructions in-order for the processor, the queue also “aligns”
instructions that may otherwise be “misaligned” in the cache. Misalignment may
occur when the stored instructions (in the cache) do not begin on those byte

boundaries accessed by the processor. For example, as shown in Figure 5.3a, if

15 The number of instructions 7, is determined by the maximum latency of
the memory subsystem. There should be enough instructions to cover any latency
such that the processor doesn’t experience any wait states.
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a 2-byte instruction is stored in the cache, it may be split and reside in more than’
one addressable block. As a result, more than one access may be required to read
each instruction. However as shown in Figure 5.3b, once in the queue,
instructions are aligned and only one access is required.

The in-line instruction queue used in this architecture is a two-level decoded
instruction queue. It is actually a series of two queues - one that holds instructions
loaded directly from the cache, and a second that holds the output of the instruction
decoder (a decoded instruction). This “two-level” quéue, shown in Figure 5.4,
provides the control unit of the processor access to decoded instructions awaiting
execution. This allows limited preprocessing which is useful for determining the
status and address of the operands [MILL95]. This knowledge is used to prefetch
appropriate data from the cache or main memory, or to predict any conditional
branches. This queue incorporates the Greedy Prefetch algorithm (described in
Appendix B) to keep the queue as full as possible with instructions from the cache.
For this algorithm to work effectively, the state of the queue should be monitored
since the rate of prefetching is not regulated or necessarily synchronized with the

rate of consumption. A state diagram illustrating the prefetch algorithm for
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prefetching from the instruction cache and loading the instruction queue is shown

in Figure 5.5.

Cache Queue
byte 1 byte 2
byte 1
byte 2
a) Misaligned 2-Byte b) Aligned 2-Byte
Instruction in Cache Instruction in Queue

Figure 5.3 - Instruction Alignment [MILL95]
(©1995 1EEE, Reprinted with Permission)

1st Level
Instruction
Queue

Instruction
Decoder

2nd Level
Instruction
Queue

Figure 5.4 - Decoded (2-Level) Instruction Queue
[MILL95] (©1995 IEEE, Reprinted with Permission)
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Figure 5.5 - Prefetch from Instruction Cache into
Instruction Queue (*In 2-Level Queue)

5.2.1.4 Prefetching Data from Main Memory

unique limitations. As previously discussed, the majority of IMD =0 values in a
split cache are caused by misses to the data cache. This is primarily due to the fact
that in general, data is not as spatially located in main memory as instructions
(although some related data items such as variables and arrays are usually stored

together). Therefore, there tends to be more cache misses (closer together) for

Prefetching data is different than prefetching instructions due to some

data references that for instruction fetches.

The prefetching of data from main memory is the consequence of a LOAD
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instruction decoded early in the instruction decode cycle.16 Data prefetching must
wait until this time since the data address isn’t known until after the opcode is
initially decoded.'” This is in contrast to in-line instructions where the address of
the next instruction is generally the next word in memory. Data is then read from
memory and placed in the data cache. While this prefetching of data avoids
possible cache misses, it also presents potential problems. For example, there is
the possibility that the address of the prefetched data may change after the prefetch
is initiated. This may occur when an instruction modifies a register that is used
later by another instruction to form the data address. This is called the Address
Generation Interlock (AGI) problem and can result in erroneous data being used
during program execution.

Data prefetching is found in several different forms, both in software and
hardware. In the software approach, prefetch instructions are inserted early in the
instruction code sequence to initiate a data prefetch. The programmer or compiler

identifies when LOAD instructions occur, and then inserts the appropriate prefetch

16 STORE instructions are not addressed by this technique, since their
operands are not prefetched. Data store operations are interfaced to memory using
a store queue.

17" As previously discussed, two-level instruction queues hold partially
decoded instructions which allows operand addresses to be accessed in most cases
before they are required.
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instruction (FETCH). This approach is much more flexible than a hardware
implementation since it is programmer controlled, and allows the designer possible
optimization of prefetch strategies. It can be especially helpful when modifying
the prefetch strategy for data with different degrees of spatial locality (i.e., arrays,
variables, etc.). A number of existing microprocessor architectures have prefetch
instructions as part of their instruction sets that allow programmers to specify a
data fetch in advance (prefetch). Some examples are described in Section
5.2.1.4.1.

Hardware controlled data prefetching uses hard-wired logic to determine
when to initiate a prefetch from rﬁerr?ory, and can be faster than the software
approach since no additional instructions are executed. Because of the difficulty
of correctly determining the operand’s address in advance, and after examining the
significant amount of work performed in this area [ABRA93], [CHEN95],
[EICK93], [KLAIOS1], [SMIT78], [SMIT82], [SMIT85], [STAE93] a simple,
modified Always Prefetch algorithm is chosen. It fetches data on every LOAD
instruction, but must wait for the instruction to be decoded before accessing any
data. This algorithm uses the operand address information available to the
processor at the time the instruction is decoded (in the 2-level instruction queue)

to form the data address and initiate the data fetch. This algorithm works correctly
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for all cases except those affected by AGIs. Although AGIs are a potential
problem, they are not anticipated to generate a significant number of small IMDs.
As shown in earlier simulations, eliminating IMD=0 values (as seen by the
processor) is possible even if several consecutive misses are incurred by the data
cache, since most data cache accesses will be separated by instruction cache
accesses (instruction fetches), thereby ensuring IMD > 0. In effect, the small IMD
values generated by AGIs may be hidden between instruction fetches. For those
AGIs not hidden, additional time will be required to access the necessary data, but
this effect is included in CPI,, (see Section 4.3.2).

5.2.1.4.1 Software Controlled Data Prefetching

Since data prefetching from main memory can be controlled in software by
the programmer, examples of such cache management instructions are worth
noting. Two instruction sets that support data prefetching include the
Motorola/IBM PowerPC and the DEC Alpha instruction sets.

The PowerPC includes an instruction that allows a programmer to prefetch
blocks of data from main memory and load them into the data cache. The Data
Cache Block Touch instruction brings data into the cache, providing the effective
address is confained in the virtual memory system’s Translation Look-Aside Buffer

(TLB). If there is a miss in the TLB, then this instruction is treated as a no-op (no
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operation executed) and no prefetch is initiated. The syntax for this instruction is
dcbt rA, rB

where the effective address of the data is the sum of the A and B registers

[POWES3].

Digital Equipment Corporation provides two instructions for prefetching
data from memory in the Alpha microprocessor. Prefetch Data Hint, and Prefetch
Data - Modify Hint each prefetches 512-byte blocks of data in anticipation of their
use. They differ in that the latter instruction provides the additional hint that
modifications (stores) to some or all of the data is anticipated [ALPH94]. Their
syntax is

FETCH

FETCH_ M
5.2.1.4.2 Hardware Controlled Data Prefetching

A basic data load unit proposed by Eickemeyer and Vassiliadis [EICK93]
may be used to predict and prefetch data from the data cache for this architecture.
Its block diagram is illustrated in Figure 5.6. LOAD instructions are detected in

the second level of the two-level instruction queue before they are passed to the
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pipeline execution unit. The address of the data is predicted 18 and the data is’
fetched from either the cache or main memory (on a data cache miss). The data
is then loaded into a FIFO load queue until the LOAD instruction advances in the
pipeline to the point when the LOAD normally computes the address of the data.
If the predicted address is correct, then the load queue immediately supplies data
to the execution unit. If the predicted address is incorrect, then another fetch from
the cache or main memory must be initiated based on the correct operand address.

A state diagram illustrating the data prefetch algorithm is shown in Figure 5.7..

18 Using operand address information available to the prefetch unit at the
time of prediction.
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Figure 5.6 - Basic Load Unit [EICK93]
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5.2.2 Cache Partitioning (Locking/Freezing)

As described in Chapter 2, portions of the cache can be protected by
“freezing” or “locking” individual lines or blocks in the cache. This protection
is required in order to ensure that needed information won’t be displaced by other
instructions or data, thus removing potentially useful information from the cache.
The partitioning scheme used in this prefetch architecture is called “N-Way

Partitioning” (NWP), and divides the cache into individual partitions [KIRK89].
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These partitions can be statically allocated to various tasks (programs) or portions’
of tasks. A task is forced to use only the partition which it owns, and therefore all
other cache data is protected. Since portions of each partition are loaded a priori
(before program execution), no cache miss reload transients are experienced
between tasks. The cache partitioning is accomplished by mapping the cache
address to a specific area of the cache defined by a “Task ID.” Figure 5.8 shows
an example of Task 2 being statically bound to one of » individual cache partitions
(Partition 2). This NWP scheme is easy to implement, requires only a hashing
function, and provides complete protection of task specific data [KIRK89].

A Static-Locked Partitioning (SLP) approach, discussed in [KIRK90]
divides an associative cache into two general areas - a smaller area for protected
partitions, and a larger area for shared use - each partition is available to the task
under execution. The smaller portion of the cache is divided into a number of
protected partitions which are task specific and loaded with the first several lines
of program code and data (hain program, branch target code, subroutines, etc.)
determined at compile time. Necessary library functions are also loaded into
partitions in this area of the cache. Since the contents of these partitions are
known, access to any information in these areas is clearly predictable. The larger

portion of the cache is shared among tasks and is loaded with in-line instructions
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Figure 5.8 - Mapping Protected Cache Partitions
[KIRK89] (®1989 IEEE, Reprinted with Permission)

or prefetched data. Access to the protected and shared areas of the cache are
determined by a mapping function which controls a Protected Area Flag (PF). If
the flag is cleared, PF=0, and the shared area is accessed. However, if PF=1,
then only the task specific partition (determined by the Task ID) may be addressed.
An illustration of the partitioned cache is shown in Figure 5.9 and is similar to that
used by Kirk in his Ph.D. research [KIRK90]. Both instruction and data caches
are implemented in this manner. However, the amount of data pre-loaded at

processor initialization may differ from the number of pre-loaded instructions.
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Figure 5.9 - Partitioned Cache [KIRK89]
(©1989 IEEE, Reprinted with Permission)

Direction to use either the protected or shared cache space may be
embedded in the execution code as additional in-line instructions (vertical insertion)
or as additional bits in the opcode (horizontal insertion). Since any access to the
cache Would require guidance on which partition to access, vertical insertion
implies an additional instruction for each memory reference (cache access). It
appears this could curtail performance, since each reference would require two
instructions - a SET/CLEAR PF instruction and a LOAD/STORE. This may be
significant since a large number of instructions reference memory. These

additional instructions would be predictable, and known at the compile time. Any

101




additional execution time would also be predictable. However, since the’
SET/CLEAR PF instruction need only toggle the protection flag, only one SET PF
or CLEAR PF instruction would be required for each block of protected or
unprotected information. This could significantly reduce the number of PF
instructions required, since individual lines of sequentially executing code and
associated data will generally be in either one of the two areas. An additional
advantage of using vertical insertion is that other than the mapping hardware, no
architectural changes are required. Horizontal insertion, while slightly faster (since
there are no additional instructions to execute) complicates instruction decoding
and execution by adding additional bits to each instruction. This in-turn, requires

additional data lines, wider memory components, etc.
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Chapter 6 Real-Time Reliability Measurements
6.1 Introduction

The proof-of-concept used for this research is similar to that used for
reliability analysis. Reliability is used to measure the probability of operational
success. It can be defined as the probability that the device will perform its
intended function for at least a specified period of time under certain environmental
conditions.  Reliability theory is used in numerous applications such as
manufacturing, military systems, automotive testing, and software design. For this
research, reliability theory is used to project how well the techniques and
architectural modifications presented in this dissertation support the operation of
real-time computer systems.

Methods for estimating failure rates for various cache designs and
evaluating the reliability of real-time systems are described. These methods apply
rigor to the intuitive conclusion that the more observations one makes of a system
under test without failure, the more likely the system will not fail when called upon
to perform its task. To estimate failure rates and reliability of real-time system
designs, theory developed for predicting the reliability of physical devices is
applied. A method of estimating statistical quantities, based on work previously

proposed by Clopper and Pearson, is used to determine failure rate limits for given
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levels of confidence [CLOP34]. Once these limits are determined, subsequent
reliability values are calculated. In addition, the use of this theory is based on the
assumption that the failure of real-time systems in meeting their deadlines is a
“random event.” This assumption may be made since all input data for each
individual execution of the program is randomly generated, similar to a typical
operating environment where input to the real-time system would also be randomly
generated.

Since it is impossible to prove that any hardware or software system design
is 100% reliable, it is likewise impossible to prové that the solutions presented in
Chapters 4 and 5 will meet all real-time requirements 100% of the time. The best
that can be accomplished is that the solutions are shown to meet all real-time
requirements for the vast majority of the time with the probability of failure
acceptably small. In the case of real-time systems, a “failure” can be defined as
the case where hard real-time deadlines are not met. Thus measuring the reliability
of techniques developed during this research may be measured by their success in
meeting all hard real-time deadlines. This reliability is a function of the time over
which reliability is measured and the constant failure rate, and is usually expressed
as Mean Time To Failure, or MTTF. For this research, the number of program

executions (runs) between failures or Mean Program Runs Between Failures
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(MPBF) may be substituted for MTTF. The reliability is measured over the total

number of individual program executions instead of the more traditional unit of
measurement, time. To estimate the constant failure rate, A, the use of probability

theory is required. Since the success or failure of a real-time system can be
classified as a binary result (meet or not meet real-time deadlines), each execution
of the prograni is either a success or failure.
6.2 Failure Rates and Reliability

The failure process can be quite complex, and is often difficult to describe
mathematically. As a result, a failure distribution is used to provide a statistical
summary of the life over which reliability can be measured. The failure rate, is
the rate at which failures occur over a certain time interval (or number of program
executions), and is defined as the probability that a failure per unit time occurs in
the interval, given that a failure has not occurred prior to the beginning of the
interval. The hazard rate indicates the change in the failure rate over the lifetime
of a population. A typical hazard rate curve for physical devices is shown in

Figure 6.1. Three distinct failure regions are indicated. The first, called the

19 Detailed discussion on reliability theory related to this research is in
located in Appendix C.
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Hazard Rate

Figure 6.1 - Typical Hazard Rate Curve
[MARTS2] (®1982 John Wiley & Sons, Reprinted
with Permission)

“initial failure region” is characterized by a decreasing failure rate, and represents
early failures due to material or manufacturing defects. The second region, called
the “chance” or “random failure region” is characterized by a near constant failure
rate. It represents chance failures caused by sudden changes in the environment.
Elimination of these failures require a device that is “over-designed” for its
intended environment. The third region, called the “wear-out failure region,” is
typified by an increasing failure rate resulting from equipment deteriora'tion

[MARTS2].

For the work presented in this dissertation, the design properties of cache
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memories are not in themselves considered physical devices, so describing them
in terms of “manufacturing defects” or “wear-out failures” does not apply. The
region of interest however, is not the first or third regions, but rather the second
region - the region of “chance” failures. This region shows a near constant failure
rate - the same rate that would result from chance failures due to random execution
of any real-time program. Most complex reliability models assume that only
random component failures need be considered, thus interest focuses only on the
chance failure region of Figure 6.1.

To determine the reliability of real-time systems given a constant failure
rate, an exponential distribution describing reliability may be used. It can be
shown that the exponential distribution accurately describes the failure time
distribution of the chance failure region and is uniquely associated with a constant
failure rate [MARTS82]. As a result, the reliability of such systems may be
described as

R(t) =e™ (53)

where ¢ is the time, or in this case the number of program executions, over which

reliability R is measured, and A is the constant failure rate, where A= .
MPBF
6.3 Confidence Levels, Intervals, and Limits

As an aid in determining the reliability of specific real-time systems, a level
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of confidence may be given to the corresponding reliability value. This
“confidence level” is given for a range of probable outcomes, and is a numerical
value - usually between 0.90 and 1.0 - that is associated with the constant failure
rate, and subsequently the reliability. The range of probable outcomes is called the
“confidence interval” and is specified as the interval between two “confidence

limits.” These limits can be considered the best and worst case probabilities of

success based on the initial constant failure rate estimate, A.

For cache memory architectures, the constant failure rate estimate may be
obtained by observing failures to meet real-time deadlines for a number of program

executions. For example, if 1000 program runs are executed and four failures are
observed, A = 4x107*. In the case where no failures are observed, A2=0. In
either case, the resulting failure rate estimate may have a “confidence level”
associated with it to improve its usefulness. If 2 is based on a random sample

(quantity n) of program executions, then it can be said that with a certain level of
confidence, the true value of A will fall within the range of confidence limits A,

and A, such that A, <A<A,. Once these confidence limits are known, reliability

values can be calculated at each limit, giving a range of possible reliability values.

The underlying premise that allows a confidence level to be associated with failure
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rates (and reliability values) is based on the statistical experience that the more

often A lies in the interval A, <A <A, , the higher confidence one can have that it

will also lie within that interval in the future. In addition, the more Bernoulli trial
observations are collected, the more confident one can be about the estimate and,
as a result, the smaller the interval needed to assure a given level of confidence
[HARNS2]. |
6.3.1 Construction of Confidence Intervals

Clopper and Pearson present methods that allow confidence levels to be
assigned to binomial probabilities [CLOP34]. A constant failure rate A can be
observed, and can be said to fall into the interval A, <A <A, with a certain degree
of confidence. The confidence interval limits, A, and A,, are determined by
calculating the region defined by A, and A,. Constructing a 95% confidence
interval implies 95% of all possible favorable outcomes calculated by the binomial
equation must be included within that region. The resulting confidence interval is
a range of binomial probabilities that is calculated for the constant probability of
failure A, and the number of independent trials over which A is observed, n.

Using the binomial equation, the probability of failure in » trials can be

calculated for all possible values of A/n for 0 <A<1. As an example, consider the

case for n=10 trials. If the observed value of the constant failure rate is A=0.4
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then P(A/n) values can be calculated and the associated probability distribution
illustrated as shown in Figure 6.2. Once this distribution is known, specific
confidence levels can be determined. For example, a 95% confidence interval
implies that 95% of the failure rate distribution is included within the 95%
confidence interval limits. This is shown in Figure 6.2. Similarly, for a 99%

confidence level, 99% of the distribution is included within its respective limits.
Since constant failure rate values other than A=0.4 are of interest, this exercise

could be repeated for all constant failure rates of interest.
To use this information more effectively, the probability distributions can
be represented graphically in such a way as to illustrate each distribution all at

once, thereby producing a more unified picture. An example is shown in Figure
6.3 where the failure rate distributions for 0 <A<1 and n=10 trials is plotted. It

illustrates both regions where failure rate distribution values are within confidence

limits and where failure rate distribution values are outside confidence limits.
Since P(A/n) values are not calculated for regions between given (discrete) A

values, a smooth line is drawn between the calculated P(A/n) values, and is
considered to “approximate” the values of interest. (The discrete binomial

probability distribution would actually yield a “stair-step” curve when plotted
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graphically). Clopper and Pearson generated a standard set of similar charts for
two levels of confidence, 95% and 99%, but for various values of z instead of just
one [CLOP34]. An example plot for 95% confidence is shown in Figure 6.4.
More detailed discussion on this technique, accompanied by some examples is

provided in Appendix C.
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are the ordinates read from (or interpolated between) the appropriate lower and upper curves, then

Prip,<p<p}>1-2.
Figure 6.4 - Confidence Interval Limits for 95%

Confidence Level [PEAR76] (®1976 Biometrika,

Reprinted with Permission)
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6.4 Estimates and Assumptions
To project the reliability of the cache design and the prefetch architecture
in reducing te.., several assumptions are made. Since the actual prefetch
architecture is not simulated in its entirety, the reliability of specific cache memory
architectures are projected. This is because the design of the cache memory forms
the backbone of any prefetch architecture and directly affects its real-time
performance. Failure rate estimates and subsequent reliability calculations are
performed using IMD output data from the cache simulator for each of the cache
architectures listed in Table 6.1. The parameters associated with these
architectures result from the cache design guidelines outlined in Chapters 4 and 5.
In addition to the cache designs chosen for success (i.e., no IMD=0
occurrences observed), a test measurement is made for a cache architecture known
to exhibit behavior that results in “failures” (IMD=0 occurrences). Upon
examination of all IMD data generated for the various cache designs and program
benchmarks, a test case is chosen. For the case of a 32k unified, 2-way associative
cache, with a block size of 1024 bytes, both successful and unsuccessful cache
behavior occurs when executing the LRCprl.c program. As illustrated in the

shaded cells of Tables 6.2 and 6.3, depending on the input data (.ok or .fail), two
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Table 6.1 - Cache Parameters Used for Reliability Measurements

Measure- | Cache Ca.che BI?Ck P Bus
ment Type Benchmark Size Size Associativity Topology
(bytes) | (bytes)
1* unified | LRCprl.c 32k 1024 2-way single
2 split | SHUTTLE.c 64k 512 2-way single
" 3 split | SHUTTLE.c 64k 1024 2-way single
|| 4 split LRCprl.c 64k 512 2-way single
5 split LRCprl.c 64k 1024 2-way single
6 split | SHUTTLE.c 128k 512 2-way single
7 split | SHUTTLE.c 128k 1024 2-way single
“ 8 split LRCprl.c 128k 512 2-way single
9 split LRCprl.c 128k 1024 2-way single

* Test case of known random failures

independent simulations show IMD=0 occurrences of zero (success) and 23

(failure). By randomly generating input data for the program executing on a cache

with these design parameters, a number of random successes and failures will

result.

Since the goal of the research is to develop a memory system to support

hard real-time systems, the estimated reliability of any system should approach

100%, with a corresponding constant failure rate approaching zero (A = 0). Since

no failures are expected (other than for Measurement 1 - the failure test case), a
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confidence level is given to each reliability value based on the constant failure rate
estimate of A = 0. To gain the most confidence in the reliability measurements

(make the confidence interval as narrow as possible), 1000 program iterations are
executed for each reliability measurement using independently generated input
files.?® The corresponding IMD output files of each execution of the program are

examined to determine if a failure occurred (any IMD =0 occurrences).

Table 6.2 - IMD=0 Count, Cache Size=32k, Benchmark: LRCprl.c.ok

Associativity II

Block

Size Unified Cache Split Cache

(bytes) 1 2 4 8 16 1 2 4 8 16 ||
16 112 95 78 78 81 80 80 80 80 80 Il
32 57 | 45 45 45 45 34 33 33 33 33
64 17 7 7 7 7 7 7 7 7 7
128 2 1 1 1 1 1 1 1 1 1
256 2 0 0 0 0 0 0 0 0 0
512 12 0 0 0 0 0 0 0 0 0 “

0 0 0 0 0 0 _0_ A

20 This in comparison to the IMD data generated in Section 4.2.3 which
is for one iteration of the benchmark program using the given cache parameters.
To ensure independent Bernoulli trials for failure rate estimates and reliability
calculations, input data to the programs are randomly generated.
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Table 6.3 - IMD =0 Count, Cache Size=32k, Benchmark: LRCpr1.c.fail

Associativity ||

Block
€S
ytes) 1 2 4 8 16 1 2 4 8 16

16 121 108 89 88 88 91 90 90 90 90

Size Unified Cache Split Cache “

32 48 53 35 35 35 36 35 35 35 35

e | 17| s g8 | 8 g8 | s 8 8 8 8 |
2l 312212121201 2121]2/1]-2]|
256 | 3 1 1 ) 1 i 1 i 1 1
sz | » o | ol ol ol o o] ofo
024 | 2 o |l o ol o o] o] o] o

6.5 Reliability Measurement Results
The reliability measurement results for each of the nine measurements are

shown in Table 6.4. Measurement 1 is the case for a known failure. After 1000
program executions, the constant failure rate is 0.854, or 2=0.854. Using this

value, an interval can be constructed for 95% and 99% degrees of confidence.
Using the confidence interval charts [CLOP34],21 for 95% confidence, A,=0.825

and A,=0.88; for 99% confidence, A,=0.825 and A,=0.89. Using the equation

for reliability, R(t) =e ~» the corresponding reliability confidence intervals are

21 §ee Section C.4.1 in Appendix C for a detailed discussion of confidence
intervals.
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calculated and shown in the last two columns of Table 6.4. Knowing A =0.854

in advance of further measurements, one can now say with 95% confidence that
the reliability of any one execution of the program is somewhere between 41.4%
and 43.8%. Similarity, with 99% confidence, the reliability of the system for one

execution of the program is between 41.0% and 43.8%.
For the remaining eight measurements, 1=0, so the corresponding failure

rate values for n=1000 and 95% are A,=0 and A,=0.003, and for 99%
confidence, A,=0 and A,=0.0055 [CLOP34]. These result in intervals of
0.997<R(1)<1.0 and 0.994<R(1)<1.0 for 95% and 99% confidence
respectively.
6.6 Conclusions

The methods presented in this chapter provide a means for estimating
failure rates and projecting the reliability of real-time systems. It gives the
designer of such systems a means of quantitatively comparing the architectures of
various memory subsystems.

The context of applications envisioned for the use of the theory described
in this dissertation are embedded real-time systems with relatively short lifetimes,

such as a navigation computer guiding a tactical missile. Since failure rate
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n Table 6.4 - Reliability Measurement Results

—

Reliability R(1), Confidence Interval

95% CI

99% CI

1

0.414<R(1)<0.438

0.410<R(1)<0.438 Il

0.997<R(1)<1.0

0.994<R(1)<1.0

0.997 <R(1)<1.0

0.994<R(1)<1.0

0.997 <R(1)<1.0

0.994<R(1)<1.0

0.997<R(1)<1.0

0.994<R(1)<1.0

0.997<R(1)<1.0

0.994<R(1)<1.0

0.997<R(1)<1.0

0.994<R(1)<1.0

0.997<R(1)<1.0

0.994<R(1)<1.0

Measurement A
1 0.854
2 0.0
3 0.0
4 0.0
5 0.0
6 0.0
7 0.0
8 0.0
9 0.0

0.997 <R(1)<1.0

0.994<R(1)<1.0

* Test case of known random failures

estimates and subsequent reliability calculations depend heavily on sample size

(number of observed program executions), the use of the reliability techniques

discussed lend themselves to applications with shorter lifetimes where an

appropriate sample size can be generated and observed. The approach discussed

may be not applicable, for example, in analyzing the reliability of applications of

very long time periods such as deep space probes, where the number of program

executions approaches .
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A final note, confidence interval charts such as that illustrated in Figure
6.4, are not intended to provide extremely precise readings, due to the subjective

interpretation of specific A values. The broad picture which they give of the

relation between n, A, A,, and A, gives one a good feel for the tradeoffs

associated with determining a useful confidence interval by modifying # and 2 and

the overall failure rate estimate and reliability of the system under measurement.
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Chapter 7 Conclusions

7.1 Introduction

Since their introduction, hierarchical memory systems have been used to
improve the overall performance of computing systems by reducing the average
latency of the memory subsystem. However, in real-time systems, the “worst
case” system performance resulting from the largest, or worst case, memory
latency is of primary concern and therefore hierarchical memories are often not
used. This research focuses on methods that improve the hierarchical memory
subsystem’s performance by reducing its worst case effective memory access time,
t.we The memory’s t., .. is a function of the cache memory’s miss ratio and can
also be described in terms of its Cache Reference Inter-Miss Distance (IMD). The

IMD is the “distance” between successive cache misses and is related to Py, as

. —1——-—. From this relationship, the worst case effective memory access
IMD +1
time can be also be expressed in terms of IMD as ¢, _, =1+ }E_D_T_l’ where T
+
we

is the time required to access the next (lower) level of the memory hierarchy. The
focus of this research is on methods to eliminate the worst case IMD (smallest
IMD values) thereby decreasing t., ... If the occurrence of the worst case IMD
value can be eliminated, then the worst case program execution time can be

reduced in a predictable manner. Methods to control IMD distribution include the
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selective choice of cache parameters such as cache type, cache size, block size, and
degree of associativity. Simulation of various cache architectures under the same
program execution requirements is used to illustrate the ability to modify the
cache’s IMD distribution by varying cache design parameters. To further aid in
eliminating unwanted IMD values, a prefetch architecture is developed. This
prefetch architecture employs instruction and data prefetching in addition to cache
line/block “freezing” or “locking” to eliminate or “hide” small IMD values. Once
specific architectures are selected, failure rate estimates and the subsequent
reliability of each design can be projected to determine how well they may function
in eliminating small IMD values, and to illustrate the robustness of using
techniques developed in this research to support real-time applications.
7.2 Summary of Results

This research is divided into three parts. The first involves modifying
specific cache parameters to determine if a relationship exists between the choice
of cache parameters and the resulting IMD distribution. These parameters include
cache size and type (unified/split), block size, and associativity. After numerous
simulations were conducted, it was determined that it is possible to eliminate
specific IMD 'values by modifying cache parameters. By increasing both the block

and cache size, the count for IMD values of 0, 1, and 2 are significantly reduced.
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In addition, an asymptotic limit for both block size and degree of associativity
exists in each case for which no additional reduction in IMD can occur regardless
of how much either parameter is increased.

The second part of the research involves developing an architecture that
facilitates prefetching code and data from main memory in an attempt to anticipate
(and therefore “hide”) specific cache misses. The design of this architecture is
based on findings from the first part of the research in addition to some well-
known cache partitioning and protection techniques (see Sections 2.3 and 2.4).

The third and final part of the research investigates the application of
reliability theory to estimate the robustness of those techniques used to control the
distribution of IMD values. The projected reliability of the memory subsystem of
real-time systems employing the cache design guidelines established in Chapters
4 and 5, are shown to be between 99.7% and 100% with a 95% degree of
confidence, and between 99.4% and 100% with a 99% degree of confidence.
7.3 Research Contributions

As discussed previously, current design methods for hard real-time
computer systems encourage the avoidance of hierarchical memories,. and
specifically caches. As Hand notes, “If pipelines and caches lead to nonpredictable

behavior, stay away from them” [HANDS89]. Additionally Simpson recommends,
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“One way to address the cache drawback, in applications that require a high degree
of determinism, is to run the RISC chip in ‘uncached mode’ for the sections of
application code that demand absolute predictability, or guaranteed response times”
[SIMP89]. Finally, Kirk gives an operational example of the Navy's AGEIS
Combat System which includes the AN/UYK-43 computer and its 32k-word cache.
He says, “... due to unpredictable cache performance, all module utilizations are
calculated as if the cache were turned off. As a result, the theoretically
overutilized CPU is often underutilized at run-time when the cache is enabled”
[KIRK90].

Clearly, the opportunity to impact the area of real-time computer
architecture exists. To this point in time, designers generally accepted the
unpredictability of caches and designed systems withouf them. The methods
discussed in this dissertation allow designers of real-time systems the opportunity
to significantly narrow the gap between the current average execution times (with
cache) and predictable reai-time execution times (without cache) by selectively
choosing appropriate cache design parameters in addition to implementing a
prefetch architecture. This may result in the increased use of real-time systems for
applications with more stringent timing requirements than are currently possible.

A major contribution of this research results from the approach taken to
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improve the cache predictability and memory access time problem in real-time
systems by examining and modifying cache behavior in terms of cache reference
inter-miss distance (IMD). This contrasts to the more traditional approach of
focusing on cache hit or miss ratios. By viewing the problem in terms of IMD,
more information is provided on the behavior of the cache than if only the miss
ratio is known. Knowledge of P only specifies how often caché misses occur,
or their frequency. IMD however, specifies where the cache misses occur with
respect to one another in addition to their frequency. Knowing both the
distribution and the frequency of cache misses more accurately describes cache
behavior and allows for possible solutions to the real-time cache problem that
might not otherwise be possible. Providing more than one Qiew of the problem
generally allows more flexibility in developing efficient solutions.
7.4 Future Work

The research presented in this dissertation illustrates that the reduction of
worst case effective memory access time and the associated increase in processor
performance is possible through the elimination of small IMD values. However
since this research is limited in scope, several topics related to this work were not
explored. Tﬁese topics include:

- the effect of external interrupts on IMD distributions and the resulting

125




impact on real-time interrupt processing speed, efficiency, and scheduling
- use of IMD theory to improve virtual memory system performance

- application of IMD theory to improve real-time system performance using
multi/parallel processors with multiple cache memories (cache coherence).
- use of reliability theory to evaluate the presence of hardware and software
defects not detected during the initial phase of design (characterized as the

“initial failures region” of the hazard rate curve)
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Appendix A Cache Associativity

A.1 Introduction

In this section, a general discussion of cache associativity is presented. It
is worthwhile examining associativity because the choice of associativity
implementation greatly impacts the cache’s overall effective memory access time.

The degree of associativity of a cache is the number of block frames (or
places) in which a given block of information (instructions or data) may reside.
Reducing the degree of associativity allow fewer block frémes from being searched
on a cache reference, thereby reducing the time required for the search.
However, this constrains which blocks may be simultaneously resident in the cache
[HILLS88]). The terms fully-associative, set-associative, and direct-mapped express
the restrictions placed on where a block from main memory may reside. A fully-
associative cache is one in which a block from memory may be placed at any
location in the cache. If a block can only be placed in a restricted set of locations,
then the cache is called set-associative. 1f a block can only be placed in a single,
specific location in the cache, then the cache is called direct-mapped. The range
of caches from direct-mapped to fully-associative is a continuum of levels of
associativity. A direct-mapped cache is a one-way set-associative cache and a

fully-associative cache with n blocks is called an n-way set-associative cache
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[HENN90]. The area of interest to this research is the relationship between the
degree of associativity of the cache and IMD behavior.
A.2 Direct-Mapped Cache (1-Way Set-Associative)

As discussed earlier, a direct-mapped cache requires a block from main
memory be placed in only a single, specific location in the cache. Its advantages
include simpler implementation and faster access times. Disadvantages include
lower hit rates (and a greater number of small IMD values) for smaller sized

caches. An example of a unified direct-mapped cache is shown in Figure A.1

Address
Tag Index Block
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1 Memory :
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1 it Memory :
I

]
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i

1 i Match Found  Data Out td

CPU

Figure A.1 - Direct-Mapped Cache [HILL88]
(®1988 IEEE, Reprinted with Permission)
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(enclosed by the dashed box). The data memory holds all cached instructions and
data, while the tag memory hold the address tags associated with a cache block.
Each block has a separate tag entry. The tag match logic produces a single bit
indicating whether the referenced block is present in the cache and is asserted only
if the tag field from the address matches the tag from tag memory.

A direct-mapped cache access requires two parallel actions: 1) accessing the
data and passing the word to Data Oui, and 2) determining if a match has been
found (cache hit). The second action requires two steps, and is the critical timing
path. The tag memory must first be accessed, and then a comparison of tags must
be made. As shown in the next section, a direct-mapped cache access is simpler
and faster than a set-associative access because accessing data memory and
determining if a match is found can proceed independently. In set-associative
caches, the result of the match-found influences the data selected [HILL88].

A.3 Set-Associative Cache

An n-way set associative cache (n=2, 4, 8, 16, etc.) is a commonly used

cache organization that allows a block to be mapped to any one of # blocks in a

“set” in the cache. This flexibility of block placement generally yields better hit
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ratios (especially in smaller caches), but requires checking n blocks during each
cache reference. An example set-associative cache is shown in Figure A.2.

To reduce hit time in a set-associative cache, each of the » tags in a set is
read and compared to the tags of the reference address in parallel. Each bank in
Figure A.2 has the same structure as the direct-mapped cache, but is replicated »

times. On a cache reference, the address is passed to all direct-mapped banks. In

Address
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Bank[0] Bank[1] Bank|n-1]
Match Data Match Data Match Data
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1 d r Data Out :

Figure A.2 - Set-Associative Cache (d-bit Word) [HILL88]
(©1988 IEEE, Reprinted with Permission)
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parallel, each bank selects a block, sends the data to the multiplexer, and computes
whether a match has taken place. After the n direct-mapped banks computes the
data out and match-found, the set associativity logic (enclosed by the dashed box
in Figure A.2) produces a single data out word and match-found signal.

The delay through a set-associative cache is determined by one of three
paths:

1) match-found, which signals a cache hit or miss

2) select-data, which selects the data word corresponding to the tag that

matched

3) data out, which provides data on a cache hit
A direct-mapped cache has timing paths 1 and 3, but not 2. This is because the
location of cache data does not depend on which comparator matched the tag
[HILL88]. It is the additional hardware associated with the select-data (enclosed
by the dashed line in Figure A.2) that extends the cache access time of a set-
associative cache. This timing path will be greater than the critical timing path

associated with a direct-mapped cache (assuming identical technology).
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Appendix B Prefetching Algorithms and
Implementation Methods

B.1 Introduction

Nearly all modern computers use some form of instruction prefetching to
improve processor performance. Some also prefetch data as well. Prefetching
introduces parallelism into the otherwise sequential operation of von Neumann
computers by allowing instruction fetch and execution to proceed concurrently.

The problem with prefetching as a processor accelerator is that program
flow is not always predictable. The contents of the queue or cache may have to
be discarded when conditional or computed jumps are encountered. This‘ problem
can be difficult to avoid since the outcome of a jump may not be known until the
instruction immediately proceeding it has been executed. The jump problem
carries with it a double performance penalty: first, the processor must wait for the
correct next instruction/data to be fetched, and second, the memory access used to
fetch the out-of-sequence instructions are lost. The former problem degrades
processor performance, while the latter wastes the bandwidth of the memory
subsystem [McCRO1].

Any prefetching scheme has the goal of reducing the processor stall time

by bringing instructions and/or data into the cache before it is needed so it can be
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accessed in the future without delay. However, if instructions or data are
prefetched too far in advance, the risk or “polluting” the cache exists. This occurs
when prefetched lines expel other lines from the cache which are more likely to be
referenced in the immediate future. Ideally, a perfect prefetching scheme would
totally avoid the memory latency time (thereby ensuring infinite IMDs).
Practically, the latency can only be reduced since there are several impediments
that prevent a perfect prediction of both the instruction stream (i.e., imperfect
branch prediction) and the data stream (i.e., dependent addresses).

Prefetching can be triggered either by a hardware mechanism, a software
instruction, or a combination of both. The hardware approach detects accesses
with regular patterns and issues prefetches at run time, whereas the software
approach relies on the compiler to statically analyze programs and insert prefetch
instructions [CHEN95].

B.2 Hardware Controlled Prefetching

Hardware controlled prefetching can be classified into one of two categories
- spatial or temporal. Spatial prefetching uses information from the current block
to determine what to prefetch, while temporal prefetching uses look-ailead
decoding of the instruction stream to determine prefetch actions.

In the spatial scheme, prefetching may occur either on every memory
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reference (Abways Prefetch) or when there is a miss on a cache block. The major
mechanism used in the latter case is to record the previous memory address in a
history table and generate prefetch requests by calculating a “stride” or “distance”
between the current address and the previous address. In the spatial scheme, the
opportune time to prefetch is not closely linked to the time of next use, but rather
as soon as the current block is accessed.

Temporal mechanisms attempt to have data in the cache “just in time” to
be used. The address of the data to be prefetched is based on the values of the
speculated operands [CHEN95].

B.3 Software Controlled Prefetching

The central idea behind software controlled prefetching is to exploit the
compile-time knowledge about the program. At compile time, FETCH instructions
are inserted into the instruction stream by the compiler, based on anticipated
references and detailed information about the memory system. At program run
time, a separate functional unit of the CPU - the fetch unit - interprets these
instructions and initiates the appropriate memory read instructions.

Making prefetch decisions at compile time (as opposed to run time, as is
common for hardware based prefetching schemes) has the advantage of being able

to draw upon detailed information about the program’s structure. For example,
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if the compiler knows or predicts that a sequence of LOAD instructions (LOAD,,
..., LOAD;) will be executed, each LOAD; instruction can be paired with a FETCH
instruction to access information required by LOAD,,4. The offset by which the
compiler anticipates the future requirements is referred to as d - the prefetch
distance. Its value will depend on memory latency and the time between individual
LOAD instructions.

B.3.1 Programmer Controlled Software Data Prefetching

Since data prefetching from main memory can be controlled in software by
the programmer, examples of such cache management instructions are worth
noting. Two processor instruction sets that support data prefetching include the
Motorola/IBM PowerPC and the DEC Alpha microprocessors.

The PowerPC includes an instruction that allows a programmer to prefetch
blocks of data from main memory and load them into the data cache. The Dara
Cache Block Touch instruction brings data into the cache, providing the effective
address is contained in the virtual memory system’s Translation Look-Aside Buffer
(TLB). If there is a miss in the TLB, then this instruction is treated as a no-op (no
operation executed). The syntax for this instruction is

dcbt rA, B

where the effective address of the data is the sum of the A and B registers
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[POWE93].

Digital Equipment Corporation provides two instructions for prefetching
data from memory in the Alpha microprocessor. Prefetch Data Hint, and Prefetch
Data - Modify Hint, each prefetches 512-byte blocks of data in anticipation of their
use. They differ in that the latter instruction provides the additional hint that
modifications (stores) to some or all of the data is anticipated [ALPH94]. Their
syntax is

FETCH

FETCH_M
B.4 Prefetch Algorithms

~ Any prefetch algorithm implemented in hardware, software, or both, has
three major concerns 1) when to initiate a prefetch, 2) which lines(s)/block(s) to
prefetch, and 3) what replacement status to give the prefetched line(s)/block(s)
[SMIT82]. In the following descriptions, a prefetching algorithm is characterized
by the knowledge it uses to determine these parameters.
B.4.1 Always Prefetch/Greedy Prefetching

Always Prefetch means that for every memory reference, access to line i
implies a prefetch access for line i+1 [SMIT82]. An extension to this algorithm

is Greedy Prefetching. The Greedy Prefetching approach begins by allocating an
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array of n buffers (cache blocks or lines) to use as a FIFO queue. As long as there
are empty buffers in the cache, blocks are prefetched as rapidly as possible to fill
them. After a start-up delay to allow prefetching to work ahead, the application
begins removing blocks to satisfy demands. When the cache is full, each block
read by the application triggers the next fetch to fill the newly freed buffer. The
greedy algorithm must allocate and fill enough buffers to satisfy demand during the
worst case interval in which the consumption exceeds prefetching [STAE93].
B.4.2 Prefetch on Miss (Demand Prefetch)

Prefetch on miss implies that a reference to block i causes a prefetch to
block i+1 if and only if the reference block i itself was a miss [SMIT82].
B.4.3 Tagged Prefetching

Tagged Prefetching, proposed by Gindele, associatés a single bit calvlerd a
“tag” with each line or block of the cache [GIND77]. This tag is set to one
whenever the line is accessed by the program. It is initially zero, and is reset to
zero when the line or block 1s removed from the cache. Any line brought into the
cache by a prefetch operation retains its tag value of zero. When a tag changes
from zero to one (i.e., when a line is referenced for the first time after prefetching)
a prefetch for the next sequential line is initialized. This idea is similar to

prefetching on miss only, except that a miss which did not occur because the line
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was prefetched (i.e., had there not been a prefetch, there would have been a miss
to this line) also initiates a prefetch [SMIT82].
B.4.4 Rate-Based Prefetching

Greedy Prefetching accommodates variations in the consumption rate by
blocking the (faster) prefetching process when the buffer becomes full. If the
consumption rate is constant, the producer and consumer processes need not
communicate so long as both proceed at the same rate. Rate-based Prefetching
initiates a fetch at periodic intervals without waiting for “buffer available” events.
This approach allows the use of fewer buffer resources, since a fetch can target a
full buffer, so long as that buffer is emptied before the fetch data overwrites it.
Data loss can occur if consumer and producer rates get out of synch [STAE93].
B.4.5 S;:ﬁptéd Prefetching

An expedient method for synchronizing access to stored data is to determine
empirically how long the access takes, and schedule the fetch that far ahead of the
demand. For example, if an item requested from memory at time ¢ relative to
execution of an instruction is ready / seconds later than it was needed, the schedule
can be adjusted to fetch the item at time #-/ during the next iteration. Static
schedules aré called prefetch scripts when they anticipate storage latency to meet

demands, and scripted prefetching is defined as an algorithm that initiates fetches
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according to a prefetch script. A static script assumes that the application and its
underlying storage system are executing deterministically in real-time without
interference from other users.
B.4.6 Dynamically Scripted Prefetching

The most efficient use of system resources occurs when complete
knowledge is available of what demands will occur, when they will occur, and
exactly how long memory accesses will take. If a sufficient portion of resources
can be reserved in advance for an application program, a correct prefetch schedule
for that particular configuration of allocated resources can be determined.
Dynamically Scripted Prefetching refers to an algorithm that performs this resource
allocation and then finds and uses a dynamically -determined prefetch script.
Dynamically Scripted Prefetching requires a functioh forrco_mputing anticipated
latencies for a given access sequence and a given configuration of reallocated
resources [STAE93].
B.5 Simulation Results for No Prefetching vs. Always Prefetch

(see following pages for results)
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Table B.1 - IMD =0 Count, 16K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity "

Block Unified Cache Split Cache ||
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP
16 297 340 103 115 158 133 92 99
32 112 85 46 54 39 40 36 38
64 58 86 20 23 14 14 12 11 ||
128 15 80 11 10 6 6 4 4 “
256 41 80 4 3 3 3 1 1 II
512 45 389 3 4 3 36 0 0 “

NP: no prefetching; AP: Always Prefetch

Table B.2 - IMD=1 Count, 16K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP
16 375 4717 | 131 143 259 261 126 129
32 116 221 63 70 94 128 61 62
64 54 132 26 31 28 39 24 23
128 65 99 7 10 20 20 5 5
256 37 106 5 5 4 4 3 3
512 34 164 2 13 1 4 1 1
NP: no prefetching; AP: Always Prefetch ll
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Table B.3 - IMD =0 Count, 32K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP | AP | NP | AP | NP AP ||
16 197 206 95 100 91 97 90 96 ||
32 73 78 37 40 35 37 34 35 ||
64 53 50 13 15 11 11 10 9 ||
128 9 15 5 7 4 3 3 2 |
256 5 11 2 1 o | o 0 0
512 6 50 0 0 0 1 0 0
NP: no prefetching; AP: Always Prefetch

II Table B.4 - IMD =1 Count, 32K Unified/Split Caches, Benchmark: SHUTTLE.c “

Associativity ||
Block Unified Cache Split Cache Jl
Size

(bytes) 1-way 2-way 1-way 2-way "

NP AP NP AP NP AP NP AP ||

16 237 299 123 124 121 121 120 120 II
32 77 146 56 59 57 60 56 56
64 45 117 22 19 23 31 23 21
128 61 94 5 7 16 15 6 6
256 36 101 4 3 3 4 3 3
Il 512 33 97 1 4 1 1 1 1

“ NP: no prefetching; AP: Always Prefetch II
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Table B.5 - IMD=0 Count, 64k Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP

16 103 110 91 97 90 96 90 96
32 41 45 36 37 34 36 34 35
64 17 17 11 10 10 10

128 11 3

256 7 0

512 0 9 0

NP: no prefetching; AP: Always Prefetch

Table B.6 - IMD=1 Count, 64k Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity ||
Block Unified Cache Split Cache II
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP - NP- AP NP - AP NP AP
16 122 127 119 120 120 120 120 120
32 58 62 55 58 56 57 56 57 ||
64 23 26 22 19 23 21 23 21
128 6 8 4 5 6 6 6 6
256 4 4 3 3 3 3 3 3
512 1 2 1 1 1 1 1 1

NP: no prefetching; AP: Always Prefetch
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Table B.7 - IMD =0 Count, 128K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP Jl
16 91 96 90 96 90 96 90 96
32 34 35 34 35 34 35 34 35
64 10 9 10 9 10 9 10 9
128 3 2 3 2 3 2 3 2
256 0 0 0 0 0 0 0 0
512 0 0 0 0 0 0 0 0

NP: no prefetching; AP: Always Prefetch

Table B.8 - IMD =1 Count, 128K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity

Unified Cache

Split Cache

1-way

2-way

1-way

NP

AP

NP

NP: no prefetching; AP: Always Prefetch
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Table B.9 - IMD =0 Count, 256K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity “
Block Unified Cache Split Cache )
(bs;tz:s) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP
16 90 96 90 96 90 96 90 96
32 34 35 35 35 34 35 34 35
64 10 9 10 9 10 9 10 9 |
128 3 2 3 2 3 2 3 2
256 0 0 0 0 0 0 0 0
512 0 0 0 0 0 0 0 0 1

|| NP: no prefetching; AP: Always Prefetch II
|| Table B.10 - IMD=1 Count, 256K Unified/Split Caches, Benchmark: SHUTTLE.c II

Associativity
Block Unified Cache Split Cache »
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP
16 119 119 119 119 120 120 120 120
32 55 56 55 56 56 57 56 57
64 22 19 22 19 23 21 23 21
128 5 6 5 6 6 6 6 6
256 3 3 3 3 3 3 3 3
|| 512 1 1 1 1 1 1 1 1

I! NP: no prefetching; AP: Always Prefetch
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Table B.11 - IMD =0 Count, 512K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity

Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way ||

NP AP NP | AP | NP | AP | NP ap |
16 90 96 90 96 90 9 90 96
32 34 35 34 35 34 35 34 35

NP: no prefetching; AP: Always Prefetch

Table B.12 - IMD =1 Count, 512K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity

Block Unified Cache Split Cache |
Size

(bytes) 1-way 2-way 1-way 2-way

NP AP NP AP NP AP NP AP
16 119 119 119 119 120 120 120 120
32 55 56 55 56 56 57 56 57
64 22 19 22 19 23 21 23 21
128 5 6 5 6 5 6 6 6 II
256 3 3 3 3 3 3 3 3
512 1 1 1 1 1 1 1 1
|

NP: no prefetching; AP: Always Prefetch II
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Table B.13 - IMD=0 Count, 1024K Unified/Split Caches, Benchmark: SHUTTLE.c

Associativity

Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way

NP ap | Np | ap | Np | AP | Np | ap |
16 90 96 90 96 90 96 90 96 "
32 34 35 34 35 34 35 34 35
64 10 9 10 10 10
128 3 2 3 3 3
256 0 0 0
512 0 0 0 0 0

NP: no prefetching; AP: Always Prefetch

Table B.14 - IMD=1 Count, 1024K Unified/Split Caches, Benchmark: SHUTTLE.c ||

Associativity
Block Unified Cache Split Cache
Size
(bytes) 1-way 2-way 1-way 2-way
NP AP NP AP NP AP NP AP
16 119 119 119 119 120 120 120 120
32 55 56 55 56 56 57 56 57 II
64 22 19 22 19 23 21 23 21
128 5 6 5 6 6 6 6 6
256 3 3 3 3 3 3 3 3
512 1 1 1 1 1 1 1 1

| NP: no prefetching; AP: Always Prefetch

Lo o prescing
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Appendix C Reliability

C.1 Reliability Function

The probability of failure as a function of time, #, can be defined as

4
P (T<t) = f fluydv = F(H), 20 (54)
0

where T'is a rahdom variable that denotes failure time, ¢ is the time over which the
probability is measured, and f(v) is the probability density function of 7. In
general, f{v) will change as environmental conditions change. F() is the
probability that the device will fail by time ¢#. Time can be replaced by other
measures of interest such as cycles, stress, or (in the case of immediate interest)
number of independent program executions. Since reliability is defined as the

probability of success, the reliability function, R(z), can be written as

o

R(t) = P(T>t) = ff(v)du = 1-F(t) (55)

t

The Mean Time to Failure (MTTF) is the expected time during which the

system or component will perform successfully [MART82], and is expressed as
MTTF(T) = f R(t)dt (56)
o

For this research, MTTF is expressed in terms of the number of program runs
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before failure or Mean Program Runs Between Failure (MPBF).
C.2 The Binomial Distribution

A binomial distribution can be used to describe the success or failure of a
system for a given sample size (number of trails). The binomial distribution is a
discrete probability distribution associated with events that have a total of two
possible outcomes. Much early research done on probability theory characterized
by the binomial distribution was done by several generations of the Bernoulli
family. As a result, the Bernoulli name has come to be associated with this class
of experiment, and each repetition of an experimenf involving only two outcomes
is called a “Bernoulli trial.” For the purposes of probability theory used for the
research described in this dissertation, interest centers not a single Bernoulli trial,
but several independent, repeated Bernoulli trials. The “independence” of each
trial implies that the outcome of any one trial cannot influence the results of any
other trial. In addition, when a Bernoulli trial is “repeated,” the conditions under
which each trial is held must be an exact replication of the conditions underlying
all other trials. The “independence” and “repeatability” associated with
experiments conducted during this research are discussed later.

The binomial distribution is described by the values of » and p, which are

referred to as the parameters of the distribution. Each parameter is a characteristic
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of a population, where n is the “number of trials” and p is the “probability of
success (or failure) on a single trial.” Given specific values of n and p, the
probability of any specified number of successes (or failures), P(x/n), can be
calculated. The value of p is a constant for the population under examination,?

and is determined by observing or estimating the number of failures prior to

calculating P(x/n). The binomial distribution can be described by the following

~ formula:
(n)pxqu—x fOl' {x i (1),;,2,...,11 }
P(x successes in n trials)={ | x n=La... 7))
0 otherwise

where n = number of independent trials

p = probability of success in a single trial

g=1-p

To illustrate a situation in which the binomial distribution applies, suppose
a production process is proaucing solid-state components that are classified as
either “good” or “defective.” When the process is not working correctly, there

is a constant probability, p=0.10, that a component will be defective. In this

2 Consistent with the constant failure rate region of the hazard rate curve
in Figure 6.1
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situation, the number of defective components, x, can range anywhere from zero
up to the total number of components examined, n. The binomial distribution can
be used to determine the probability of failure for any specified value of x and n.
For example, the probability that exactly one component will be defective (x=1)

out of a sample of four (n=4), and p=0.10 is calculated as follows

X R X

P (x=1, n=4)

I
S
)

\ _
-4 (0.10)1(0.90)* (58)

0.2916

Similarity, the probability that there are exactly two defective components (x=2)

out of a sample of n=4 can be calculated to be
P(x=2, n=4) = (:) (0.10)2(0.90) = 0.0486 (59)

The probability of any number of defective components from zero to four may be
determined in the same way [HARNS2].
C.3 The Exponential Distribution

The exponential distribution is widely used in describing the reliability of

many systems. It can be shown that the exponential distribution accurately
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describes the failure time distribution of the chance failure region (see Figure 6.1)
and is uniquely associated with a constant failure rate [MART82]. The reliability

function (55) then becomes

R(t) =e™ (60)

where ¢ is the time over which reliability is measured and A is the constant failure
rate. In the specific case examined in this dissertation, A can be obtained by
observing the number of failures over a specified number of program executions.
This value of A can then be used for future reliability calculations. The number -
of program executions over which the reliability is measured is substituted for z.
A is related to MTTF as A = 1/MTTF or A = 1/MTBF. For a perfectly reliable
system, R = 1, so A must equal zero. Proving A equals (or approaches) 0 can be
a very difficult task, so a more practical (and measurable) approach is taken. For
example, if the reliability were lowered to 99% over 100 program runs, solving

for A leads to

-InR
t

A= = 0.1x10°° (61)

Therefore, to demonstrate that a particular solution is 99% reliable for 100

independent program runs, a A value of 0.1x10° must be obtained [BLAK79].
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This implies that no more than 1 failure per 10,000 program runs during testing.
Such a reliability value can be obtained by simulating the proposed system,
executing the program 10,000 times (using independent input data to ensure
Bernoulli trials), and measuring any observed failures. Using these failures as data
points, constant failure rates estimates and reliability values can then be projected.
However, running a program 10,000 times and collecting data on each execution
may prove to be an impractical task in many cases. An alternative method is to
calculate reliability with certain “confidence level” using a lesser number of
program executions to estimate the constant failure rate, A. Using observed or

estimated failures for a smaller number of program executions as data points, a
value of A can be obtained and indicated as A. This value for A then becomes the

constant failure rate used for future probability (and reliability) calculations and is
substituted for p in the binomial formula (5§7). The use of confidence levels in
association with constant failure rate estimates will be discussed in the next section.

C.4 Confidence Levels and Intervals
In projecting the reliability of real-time cache architectures, A values are

obtained by observing failures of program execution time to meet hard real-time

deadlines for a number of program executions. For example, if 1,000 program
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runs are executed and four failures are observed, 2 = 4x107. In the case where

no failures are observed, A=0. In either case, the resulting failure rate estimate

may have a “confidence level” associated with it to improve its usefulness. The

confidence level is a numerical value, usually between 0.90 and 1.00, that is
associated with the constant failure rate, and therefore the reliability. If 2 is based

on a random sample of 7 program executions (trials), then it can be said that the
true value of A will fall within the range of confidence limits @ and b, a< A <b
with a certain level of confidence.?? This range between a and b is described as
the “confidence interval.” For example, the meaning of a 95% confidence level
is that the true parameter (or outcome) is expected to be included within a specific
range of values 95 out of 100 times. The confidence interval limits can be
considered the best and worst case probabilities, and are based on the best and

worst case failure rate estimates and the number of trials (program executions) over
which A is observed. Once these confidence limits are known, reliability values

can then be calculated at each limit, giving a range of possible reliability values.

23 The underlying premise that allows a confidence level to be determined
is based on the statistical experience that the more often p lies in the interval
p,<p<p,, the higher confidence one can have that it will also lie within that
interval in the future.
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In general, confidence intervals and their limits are constructed on the basis of
sample information, so changes in A and n affect the size of the interval and the

interval limits. The underlying premise that allows a confidence level to be
associated with failure rates (and reliability values) is based on the statistical

experience that the more often A lies in the interval A <A<A,, the higher

confidence one can have that it will also lie within that interval in the future. In
addition, the more Bernoulli trial observations are collected, the more confident
one can be about the estimate and, as a result, the smaller the interval needed to
assure a given level of confidence [HARNS2].

The difference between probability and confidence is that the concept of
probability is used in reasoning from a known population (number of program
executions) to a random sample (number of successes or failures) whereas the
concept of confidence is used in reasoning from an observed sample (number of
failures over a number of program executions) to its unknown population (failure
rate) [WALKS53].

C.4.1 Construction of Confidence Intervals
Clopper and Pearson present methods that allow confidence levels to be

assigned to binomial probabilities for a range of x and » values [CLOP34]. For
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example, a constant probability of success (or failure) p can be observed (or
estimated), and can be said to fall into the interval p, <p <p, with a certain degree
of confidence. The confidence interval limits, p, and p, are determined by
calculating the region defined by p, and p, that include 95% (for a 95% confidence
interval) of all possible outcomes of P(x/n). The resulting confidence interval is
a range of binomial probabilities that is calculated for the constant probability of
success (or failure) p, and the number of independent trials over which p is
observed, n. Using the binomial equation (57), the probability of future successes,

P(x/n), can be calculated using p, and p,, resulting in an interval for P, P, <P<P,.

Clopper and Pearson constructed such confidence intervals for two cases: 95% and
99% confidence [CLOP34], [PEAR74]. The basic theory behind their construction
is described in the following paragraphs.

Using the binomial equation (57), the probability of x successes in 7 trials
can be calculated for all possible values of x/n for 0 < x/n < 1. As an example,
consider the case for n=10 trials. If the observed (or estimated) value of the
constant probability is 0.4 (p=0.4) then P(x/n) values can be calculated and are
shown in Table C.1. Since these values cover all possible probabilities for 0 < x/n
< 1, their sum will equal 1.0 (1.0001 with rounding errors). This probability
distribution is illustrated in Figure C.1 [WALK53]. Given this information, it can
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now be determined how confident one is, based on the given constant probability
of success, that the resulting calculated probability will fall within a specific range
of values. For example, if one wants to work with a region that will give 95%
confidence (and 5% failure) that the calculated probability will fall within this
region of values (based on 7 and p), confidence limits must be determined. The
choice of these limits implies that 95% of the calculated probability values should
fall within the interval defined by these limits. As shown in Figure C.1, the most
likely opportunity for success occurs for those P(x/n) values with the greatest
magnitude in the distribution. The most likely opportunities for failure will occur
at either extreme of the distribution (x/n - 0 and x/n -~ 1). Assuming a 95%
confidence interval, 2.5% of the failures will occur at either tail of the distribution.
Examining the data in Table C.1 and Figure C.1, the values of x/n at either end
of the distribution that cause P(x/n) to be less than 0.025 (2.5%) should be
included in the failure region while all others will be in the region of success.
Since 5% of the calculated probabilities should fall in the failure region, the sum
of individual probability values is made at either tail of the distribution until the
0.025 threshold is reached or exceeded. For x/n=0, P(0/10) = 0.006 whic.h is
less than 0.025. Therefore this value is included in the failure region. If P(0/10)

and P(1/10) are examined, their sum is 0.046 which is greater than 0.025. Asa
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result, x/n=1 is not in the failure region, but is included in the region of success.

Table C.1 - Calculated Probabilities for

n=10 and p=0.4
X P(x/n)
II 0 0.006
1 0.040
2 0.121
3 0.215
4 0.251
5 0.201
6 0.111
7 0.042
8 0.011
9 0.002
! 10 0.0001

Using the same methodology, the sum of P(x/n) values for x/n= 1.0, 0.9, and 0.8
is 0.0131 which is less than 0.025 and should therefore be included in the failure
region [WALKS53]. It can now be said that in 95 out of 100 cases, the calculated
value for P(x/n) will fall in a region defined by P(1/10) and P(7/10), or
P(1/10) < P(x/n) < P(7/10). Likewise, if the confidence interval is expanded to
99%, then 1% of the P(x/n) values are rejected (0.005 at either tail of the

distribution). For this example, the interval now becomes
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P(0/10) < P(x/n) < P(9/10). Both cases are illustrated in Figure C.2.

0.25 +
0.20 +
0.15 +
P(x/n)

0.10 +

0.05 +

1
1

o L1 11
0 1 2 3 4 5 6 7 8 9 10
x/n

Figure C.1 - Probability Distribution for P(x/n),
n=10, p=0.4 [WALKS53] (®1953 Harcourt Brace &
Company, Reprinted with Permission)
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025 + : .
I i !
i ' !
020 + i |
| I t
| I !
015 + ! ! i
P(x/n) | : :
010 + | : |
I | !
| ! '
0.05 + 1
I
|
o L N T N E_—
0 1 2 3 4 5 6.7 8 9 10

x/n
Figure C.2 - Confidence Intervals Marked on

Probability Distribution, p=0.4, n=10 [WALK53]
(©1953 Harcourt Brace & Company, Reprinted with
Permission)

Since constant probability values other than p=0.4 are of interest, this
exercise could be repeated for all p values of interest. If all p values were
examined and corresponding P(x/n) values calculated, a table of computed
probability distributions can be created as shown in Table C.2. While p is constant
for any one population, all possible populations are considered, so the scale for p

is a continuum extending from O to 1. Each horizontal row of the table is a

sampling distribution for which the sum is equal to 1.0 (except for rounding errors)
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[WALK53].%

II Table C.2 - Calculated Probability Distributions, n=10 [WALKS53] ||
x/n

P 0 0.1 102]03|04}05)]06|07]08] 09 1.0

0.9 002 | .011 | .057 | .194 | 387 | .349
0.8 .001 | .006 | .026 | .088 | .201 | .302 | .268 | .107 ||
0.7 001 | 009 | 037 103 | 200 | 267 | 233 | 121 | o8 |
0.6 002 | .011 | .042 | .111 | 201 | .251 | .215 | .121 | .040 | .006

0.5] .001 | .010 | .044 | .117 | .205 | .246 | .205 | .117 | .044 | .010 | .001

0.4] .006 | .040 | .121 | .215 | .251 | .201 | .111 | .042 | .011 | .002

0.3 .028 | .121 | .233 | .267 | .200 | .103 | .037 | .009 | .001
0.2 .107 | .268 | .302 | .201 | .088 | .026 | .006 | .001 ||
0.1] .349 | .387 | .194 | .057 | .011 | .002

p - constant probability; x - number of successes (or failures); n - number of trials

To use this information more effectively, the distributions can be
represented graphically in such a way as to illustrate each distribution all at once,
thereby producing a more unified picture. Figure C.3 shows the distributions of
Table C.2 for 0<p<1 and n=10 trials. It illustrates both regions of success and
failure for 95% confidence. Since P(x/n) values are not calculated for regions

between given (discrete) p values, a smooth line is drawn between the calculated

24 The vertical columns are not probability distributions.
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P(x/n) values, and is considered to “approximate” the values of interest. 2
Clopper and Pearson expanded this idea, generating a standard set of similar charts
for two levels of confidence, 0.95 and 0.99, but for various values of 7 instead of
just one [CLOP34], [PEAR76]. Example charts for 95% and 99% confidence are
reproduced in Figures C.4 and C.5 respectively. These charts can be used to

determine confidence interval limits p, and p, based on the constant probability of
failure, p (-X) , and the number of trials, n, over which they were observed.28
Once p, and p, are determined, the confidence interval for P(x/n) can then be
calculated. The failure rates A, and A, can be substituted for p, and p,, thereby

creating a failure rate interval. These limits can then be used to calculate a range

of reliability values.

25 The discrete binomial probability distribution would actually yield a
“stair-step” curve when plotted graphically.

26 Confidence interval charts are not intended to provide extremely precise
readings due to the subjective interpretation of specific A values. The broad
picture which they give of the relation between », A, A,, and A, gives one a good
feel for the tradeoffs associated with determining a useful confidence interval by

modifying n andA and the overall reliability of the system under measurement.
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0 1 2 3 4 5 6.7 8 9 10

Figure C.3 - 95% Confidence Interval Chart, n=10
[WALKS53] (©1953 Harcourt Brace & Company,
Reprinted with Permission)

C.5 Example Reliability Calculations

The following examples illustrate the use of interval estimation and
reliability calculations.
Case 1 - Failures Observed

A program using a randomly generated input file (to ensure Bernoulli trials)
is run 100 times (#=100 trials), and 2 real-time deadline failures are observed

resulting in an MPBF of 50 program executions between failures. The resulting

constant probability of failure is estimated to be 0.02 or 2%, with 2=0.02. With
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what confidence can this failure rate estimate be used? Using the confidence
interval chart for 95% confidence shown in Figure C.4, it may be determined that
this failure rate value falls into the interval of Al <0.02< Az , where A;=0.0 and
A,=0.07. This says that “with a 95% degree of confidence, the true value of the
constant failure rate of the system falls between 0 and 0.07.” Using these failure
rate limits of A, and A, a reliability interval can be calculated as
0.932<R(1)<1.0. Similarly as stated above, it can be said that “with a 95%
degree of confidence, the true value of the system’s reliability for one execution
of the program falls between 93.2% and 100%.” Additional reliability intervals

are calculated by varying the number of program executions over which R(z) is
measured while keeping 2 =0.02and n=100 constant [CLOP34], [PEAR76]. The

results are shown in Table C.3.
If A is estimated by observing the number of failures over a larger sample
size of program executions, then the corresponding confidence interval will shrink,

giving a better estimate of the overall system reliability. For example, if the
number of failures observed over 1000 program runs is 20, then 2=0.02 as

before, but it can be said with more confidence, since a larger sample (n=1000 vs.

n=100) is used. Using Figure C.4 ( 95% confidence), A;=0.0125 and A,=0.0275
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results in a reliability interval of 0.973 <R(1)<0.988. This is a much smaller
reliability interval, giving a more useful value for overall reliability.

Corresponding reliability intervals for various values of ¢ (number of executions)
are shown in Table C.3. If n were taken to the extreme (n=c), and

A =A,=A,=0.02, the reliability interval would be zero and a specific reliability
value for each case would be available (instead of a range of values) . They are
shown in the last column of Table C.3. Note how increasing the degree of

confidence results in a wider interval for all cases. Table C.4 shows the values
obtained for a 99% confidence level and A =0.02.
Case 2 - No Failures Observed

For this case, no failures are observed for =100 trails. This results in an

estimate of A=0. The resulting reliability is then
R@®) =e™ =10 (62)

for all # (any number of program executions). Using A=0, n=100 program runs,

and a 95% confidence level (Figure C.4), two confidence interval limits are found:
A,=0, and A,=0.03. Corresponding A values for a 99% confidence level are

A,=0, and A,=0.055. If n is increased to 1,000 executions, corresponding A
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limits for 95% confidence are A,=0 and A,=0.003, while for 99% confidence

A,=0 and A,=0.0055. The resulting reliability intervals for 95% and 99% and

A =0 are shown in Tables C.5 and C.6 respectively.

Table C.3 - Reliability Intervals for 95% Confidence Level, A=0.02

n=100 n=1,000 n=e "

Runs, 7 |  ROiwer | R@Oupper R(Ovower R(®ugper R(@)

1 0.932 1.0 0.972 0.987 0.980

10 0.496 1.0 0.759 0.882 0.818
50 0.030 1.0 0.252 0.535 0.367 ”
100 0.001 1.0 0.063 0.286 0.135 ||
200 8.31x107 1.0 0.004 0.082 0.018 II
500 6.30x10¢ 1.0 1.06x10° 0.002 4.52x10° ||
" 1000 3.97x10* 1.0 1.14x10% 3.76x10° 2.06x10° I|
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Table C.4 - Reliability Intervals for 9% Confidence Level, 1 =0.02

n=100 n=1,000 n=co
Runs,? | ROuwer | ROuper R(Ovower R(®ugper R(@)
1 0.916 0.998 0.968 0.990 0.980
10 0.416 0.987 0.722 0.904 0.818
50 0.012 0.939 0.196 0.606 0.367
100 1.58x10* 0.882 0.038 0.367 0.135 ||
II 200 2.51x10°® 0.778 0.001 0.135 0.018 ||
500 9.99x10%° 0.535 8.76x10°® 0.006 4.53x10°
9.98x10* 0.286 7.68x10°" 4.53x10° 2.06x107? |

Table C.5 - Reliability Intervals for 95% Confidence Level, 2 =0

n=100 n=1,000 n=w
R(®)Lover R(®upper R(®)Lover R(®)upper R()
0.970 1.0 0.997 1.0 1.0 “
0.740 1.0 0.970 1.0 10 |
0.223 1.0 0.860 1.0 1.0 |
0.049 1.0 0.740 1.0 1.0
247%10¢ | 1.0 0.548 1.0 1.0
3.05x107 1.0 0.223 1.0 10 |
935x10% | 1.0 0.049 1.0 10|
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Table C.6 - Reliability Intervals for 9% Confidence Level, 1 =0

n=100 n=1,000 n=e

Runs, ¢ R(®Lover R(®upper R(®)Lower R(Dupper R(@®)
1 0.946 1.0 0.994 1.0 1.0 ]l
10 0.576 1.0 0.946 1.0 o |
50 0.063 1.0 0.759 1.0 10 |
100 0.004 1.0 0.576 1.0 10 |
200 | 1emios | 1.0 0.332 10 o |
s0 | risxioz | 1.0 0.063 1.0 o |

1000 | 120x10% | 1.0 0.004 1.0 1.0

As can be seen from these two examples, the sample size n (number of

statistically independent program executions over which X is obtained), is crucial

in obtaining a good estimate of the system reliability. For example, when

measuring the reliability over 200 program executions and using 2=0.02 over

n=100, n=1,000, and n=w, different intervals are obtained. For example, using

95% confidence leads to the following:

8.31x1077<R(200) <1.0
0.004 < R(200)<0.082

R(200)=

0.018

for A = 0.02, n=100
for A = 0.02, n=1,000
for A = 0.02, n=c
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By increasing the sample size by an order of magnitude over which X is obtained,
(n=100 to n=1000), the resulting reliability confidence interval decreases by

almost 13 times. The maximum % error (difference between R(z) for A measured
at n=« and A measured at =100 or n=1000) can be calculated by examining

respective R(200) values at Xl and .):2 ,

maximum % error = max {(R(¢) lz—R @®.) R@®_-R® M)} x 100% (64)

With 95% confidence and for n=100, the maximum error = 98.2%; for n=1000,

the maximum error = 6.4%; and for n=, the maximum error=0%.
Attempting to observe n=e samples to determine X is impossible, so

something less is required. For n=1,000 a maximum error of 6.4% results, and
would seem acceptable for most cases when compared to the 98.2% error for
n=100. Increasing n by an additional order of magnitude to n=10,000 may gain
a more accurate reliability value, but may not be worth the additional resourées and
time required since it would only decrease the maximum error by an amount less

than 6.4%.
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The numbers printed along the curves indicate the sample size n. If for a given value of the abscissa ¢/n, p, and p,

are the ordinates read from (or interpolated between) the appropriate lower and upper curves, then

- Prip,<psp}=l-2a.

Figure C.4 - Confidence Interval Limits for 95%
Confidence Level [PEAR76] (®1976 Biometrika,
Reprinted with Permission of Biometrika Trustees)
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The numbers printed along the curves indicate the sample size n.

Note: the process of reading from the curves can be simplified with the help of the right-angled corner of a loose
sheet of paper or thin card, along the edges of which are marked off the scales shown in the top left-hand corner of

each Chart.

Confidence Level [PEAR76] (®©1976 Biometrika,

Figure C.5 - Confidence Interval Limits for 99%
Reprinted with Permission of Biometrika Trustees)
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Appendix D Performance Evaluation Tools

D.1 Evaluation Toois

Processor and cache performance evaluation tools can be roughly divided
into two types of models: trace-driven models and execution-based models. Trace-
driven models simulate the instruction and data flow of the processor and cache,
but in the case of a processor model, do not actually execute instructions or
generate results. Instead, they are fed a program trace which contains the dynamic
sequence of instruction addresses, instruction opcodes, and data addresses that
occur during execution. Execution-based models, on the other hand, execute code
much as a real processor would, generating results and using those results in
conditional branches and so forth [POUR94]. For this work, trace-driven cache
simulation was used.

Trace-driven simulation uses one or more (instruction and data address)
traces and a cache simulator. A trace is a log of a dynamic series of memory
references, recorded during the execution of a program or workload. The
information recorded includes the address of the reference and the reference’s type
(instruction fetch, data read, or data write). One or more traces are then used to
drive a simulation model of cache memory. A cache simulator is a program that

accepts a trace and parameters that describe a unified or split cache, mimics the
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behavior of the cache in response to the trace, and computes performance metrics
(i.e., miss ratio) [HILL89]. It also can provide information on a cycle by cycle
basis of cache activity such as hit or miss and memory address. By varying
parameters of the cache simulator, it is possible to simulate directly any cache size,
placement, fetch or replacement algorithm, block size, etc. This type of simulation
has become the mainstay of memory hierarchy evaluation for the last 20 or so
years and is widely accepted in the research community [SMIT82], [HILL89],
[POUR94]. In fact, in many cases, trace-driven simulation is preferred to any type
of actual measurement since these simulations are repeatable and allow cache
parameters to be varied so that effects can be isolated. They are cheaper than
actual hardware monitoring and do not require access to, or the existence of, the
machine being studied.
D.2 Program Tracing

Since trace-driven simulation is used to evaluate performance of cache
configurations, address traces of selected benchmark programs are required.
Traces can be generated by several methods. Hardware-captured traces are
captured by hardware performance monitor logic that directly records physical
memory referénces. Complexity, cost, and lack of flexibility are the primary

limitations of this approach. Interrupt-based traces are generated when the
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program is interrupted after execution of each instruction, and address information
is recorded. The problem with this method is that the need for interrupting every
instruction slows down the trace géneration significantly. Simulation-based traces
are based on the use of a cycle-level architectural simulator that executes the
simulated machine at the binary level. By implementing the “programmer’s
model” of the machine exactly, address can be easily traced. However, this
method requires extensive coding of specific architectures, and is not easily
modified. Microcode-based traces are generated by modify microcode to record
instruction and data addresses. While this method is generally very fast, RISC
processors in general do not contain microcode and current CISC processors have
their microcode in their read-only memory (ROM) which is not modifiable (The
ATUM project [AGAR86] made this method popular by generating many traces
for the DEC VAX-11/780 processor). In instrumented program-based traces, the
program source code (operating system or application) is directly modified for
trace generation. By interspersing instructions to record address information at
strategic locations in the existing code, address traces can be efficiently generated
[POURY4]. This method has attracted considerable attention in recent years, .and
was chosen for this research due to its flexibility and efficiency. The Quick

Profiling and Tracing System (QPT), written by James Larus [LARU93],
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[BALL92], was chosen to generate the require traces due to its flexibility,
efficiency, interface to cache simulators, and widespread use in the research
community [LARU92], [LEBE94], [LIU93].

The QPT tracing program is an exact and efficient program tracing system
and is available as part of the Wisconsin Architectural Research Tools Set (WARTYS)
[HILL93].2” The QPT tools rewrites a program’s executable file (a.ouf) by
inserting code into the file to record the execution sequence of every basic block
(straight-line sequence of instructions) or control-flow edge (conditional
execution). From this information, QPT regenerates a full program trace on
instruction and data references on demand [LARU93]. Figure D.1 illustrates the
steps required to generate program traces in cache simulator readable format. QPT
adds tracing code to a program’s executable file (a.our) aﬁd produces the traced
application (a.out.qpt) and a trace generation program (a.out_sma.c). The latter
program is linked to an application prégram (i.e., din.c) that writes the program

trace is a format suitable for the cache simulator being used.

27 QPT also profiles programs. For example, it generates program
statistics such as the frequency of specific basic block execution.
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Application

3 |Traced Program | g — input
(a.out) QPT 8 data

(a.out.qpt)

Regeneration
Program
(a.out_sma.c)

Trace File
(a.out.qtrace)

Compiler

a.out.qtrace

cache simulator

din.out =3 formatted program
trace

Figure D.1 - QPT Program Tracing Flow Chart [LARU93]
(®1993 IEEE, Reprinted with Permission)

D.3 Cache Simulator

The cache simulator chosen to simulate the cache configuration is Dinerolll
written by Mark Hill. It was selected due to its widespread use and availability
[KIRK90], [LLIU93]. The simulator reports the behavior of one or more alternative
cache designs in response to an input program trace provided by the user (e.g, with
QPT) and sf)eciﬁed cache parameters. Cache parameters (e.g., block size,

associativity, etc.) are set with command line options [DINE94]. A unified cache
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(instructions and data cache together) or split cache (separate instruction and data
caches) can be simulated. Several parameters can be varied, and are listed in Table

D.1. The default parameter settings are listed in the footnotes to the table.
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i inerolll in bol
1 - size in bytes; no default
2 - size in bytes; 0 (no sub-block)
3 - n-way associativity; 1 (direct mapped)
4 - LRU, FIFO, or Random
5 - demand fetch (no prefetching); always-prefetch; prefetch after demand miss;
tagged prefetch; load-forward prefetch; sub-block prefetch
6 - prefetch distance in sub-blocks (if enabled) or blocké otherwise; 1 (sub) block
7 - write-through or copy-back

8 - write allocate or no-write allocate
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Appendix E Simulation Results
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E.1 IMD=0, 1, and 2 for SHUTTLE.c Benchmark

Table E.1 - IMD=0 Count, Cache Size=_8k, Benchmark: SHUTTLE.c

Associativity “
Block i
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16

16 512 240 165 146 147 333 137 119 112 114

32 185 112 77 64 69 65 54 41 38 34

[ 128 [r2s |26 |28 [ 2|20 ] 17 [1s |2 |n |10
256 | 140 [ 20 [ 35 |36 [ 3n] 6 | 3| 4| 4|3
sz | oo | 98 [ 1 |36 || 4 [ v | 1| 2]

1024 | 2446 | 3 1 1 | wa] 6 0 0 0 | wal

Table E.2 - IMD=0 Count, Cache Size= 16k, Benchmark: SHUTTLE.c ||

Associativity “
Unified Cache Split Cache
1 2 4 8 16 1 2 4 8 16
267 119 107 100 99 178 97 97 96 95

115 49 44 37 34 38 32 35 31 30 “

28 21 21 16 17 15 1 12 10 10 ||

43 11 9 11 11 7 6 5 7 5 Il
71 4 2 4 4 3 1 1 1 1 ||
510 5 0 2 2 3 0 0 0 0
2312 0 0 0 0 6 0 0 0 0
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Table E.3 - IMD=0 Count, Cache Size =32k, Benchmark: SHUTTLE.c II
Block Associativity “
Size Unified Cache Split Cache
(ytes) 1 2 4 8 16 1 2 4 8 16
16 153 102 95 95 95 100 95 95 95 95
32 76 35 30 30 30 34 30 30 30 30 ||
64 20 12 9 9 9 11 9 9 9 9 ||
128 10 7 4 4 4 4 4 4 4 4 II
256 35 3 1 1 1 0 0 0 0 0
512 264 1 0 0 0 0 0 0 0 0
I 1024 230 0 0 0 0 0 0 0 0 0 II
Table E.4 - IMD=0 Count, Cache Size =64k, Benchmark: SHUTTLE.c
Block Associativity l\
Size Unified Cache Split Cache
ytes) 1 2 4 8 16 1 2 4 8 16 “
16 108 96 95 95 95 95 95 95 95 95 Il
32 37 31 30 30 30 30 30 30 30 30 "
64 17 10 9 9 9 9 9 9 9 9 II
128 9 4 4 4 4 4 4 4 4 4
256 4 0 0 0 0 0 0 0 0 0 “
512 6 0 0 0 0 0 0 0 0 0
1024 6 0 0 0 0 0 0 0 0 0
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Table E.5 - IMD=0 Count, Cache Size=128k, Benchmark: SHUTTLE.c

e e e

Block Associativity “
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 96 95 95 95 95 95 95 95 95 95
32 30 30 30 30 30 30 30 30 30 30
64 9 9 9 9 9 9 9 9 9 9
128 4 4 4 4 4 4 4 4 4 4
256 0 0 0 0 0 0 0 0 0 0 Il
512 0 0 0 0 0 0 0 0 0 0
1024 0 0 0 0 0 0 0 0 0 0

|| Table E.6 - IMD=1 Count, Cache Size=_8k, Benchmark: SHUTTLE.c “

Associativity JI
II Block
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 561 338 198 184 173 339 181 150 151 154
32 262 150 103 94 88 175 86 75 71 69 ||
64 183 141 71 70 71 73 49 42 40 34 |
128 108 44 40 34 32 36 18 13 14 15
256 100 40 31 25 24 29 12 8 8 8
512 153 53 60 97 83 51 10 1 2 3
1024 289 82 68 36 n/a 94 1 3 3 n/a ||
|
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Table E.7 - IMD=1 Count, Cache Size=16k, Benchmark: SHUTTLE.c
Associativity ||
Block
Size Unified Cache Split Cache II
(bytes) 1 2 4 8 16 1 2 4 8 16
16 465 156 148 129 124 271 138 132 121 121
32 165 70 69 59 63 97 64 62
64 106 39 36 34 35 33 32 31
128 60 11 10 10 11 18 8
256 53 6 6 7 8 16 5 4
512 116 2 1 1 2 34 1 1
1024 208 8 2 2 2 60 % =1=
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Table E.8 - IMD =1 Count, Cache Size =32k, Benchmark: SHUTTLE.c
Block Associativity
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 314 131 121 120 120 122 121 121 121 121
32 121 57 53 52 53 54 53 53 |53 53
64 89 28 23 23 23 25 24 24 24 24
128 28 7 6 6 6 7 7 7 7
256 30 4 4 4 4 4 4 5 4 3
512 63 1 1 1 1 1 1 1 1 i
1024 41 6 1 1 1 1 1 1 | 1 ] 1




Table E.9 - IMD=1 Count, Cache Size =64k, Benchmark: SHUTTLE.c

Associativity
Block
Size Unified Cache Split Cache Il
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 126 120 120 120 120 121 121 121 121 121
32 57 52 52 52 52 53 53 53 53 53
64 26 23 23 23 23 24 24 24 24 24
128 8 6 6 6 6 7 7 7 7 7
256 4 3 4 3 3 3 3 3 3 II
512 1 1 1 1 1 1 1 1 1 1 “
1024 1 1 1 1 1 1 1 1 1 1 “
———— e

Table E.10 - IMD =1 Count, Cache Size=128k, Benchmark: SHUTTLE.c

Block Associativity
Size Unified Cache Split Cache JI
(bytes) 1 2 4 8 16 1 2 4 8 16 II
16 123 120 120 120 120 121 121 121 121 121
32 54 52 52 52 52 53 53 53 53 53
64 24 23 23 23 23 24 24 24 24 24 “
128 7 6 6 6 6 7 7 7 7 7
256 4 3 3 3 3 3 3 3 3 3<|’
512 1 1 1 1 1 1 1 1 1 1 II
1024 1 1 1 1 1 1 1 1 1 1 “
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Table E.11 - IMD =2 Count, Cache Size=_8k, Benchmark: SHUTTLE.c ||
Block Associativity ‘“
Size Unified Cache Split Cache
e I 2 4 8 16 1 2 4 8 16 ||
16 645 395 243 236 219 420 230 204 197 198 II
32 338 165 113 95 90 250 97 77 67 68
64 204 80 61 65 49 130 40 27 28 26
128 170 95 71 42 33 111 27 18 16 14
256 85 36 21 32 21 76 16 10 9 9
512 163 40 25 57 76 81 21 6 7 6 ||
1024 326 184 127 109 n/a 89 55 9 40 n/a
Table E.12 - IMD=2 Count, Cache Size=16k, Benchmark: SHUTTLE.c
Block Associativity
Size Unified Cache Split Cache
et IE 2 4 8 16 1 2 4 8 16 |f
16 466 197 192 166 166 273 171 169 158 158
32 144 | 18 | 70 | 6s | 62 | 100 | 59 | 57 | 53 | s3
64 45 41 35 26 27 27 21 19 20 19 ||
128 33 34 31 11 12 20 8 8 8 9
256 20 8 7 6 8 15 5 5 5 6 4|
512 100 14 13 7 6 18 4 4 5 5 ||
1024 240 16 20 6 40 18 4 5 5 5
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Table E.13 - IMD=2 Count, Cache Size=32k, Benchmark: SHUTTLE.c

Associativity
Block
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 351 168 159 157 157 159 158 158 158 158
32 87 58 53 54 53 53 53 53 53 53
64 22 22 19 19 19 19 19 19 19 19
128 1 9 7 7 7 9 8 8 8 8
256 4 4 4 4 4 5 5 5 5 5
512 5 6 4 4 4 6 4 4 4 4 ||
| 1024 | 11 5 3 4 3 6 4 4 4 4 H
Table E.14 - mfz Count, Cache Size=64k, Benchmark: SHUTTLE.c “
Block Associativity
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 164 157 157 157 157 157 157 157 157 157 Il
32 55 53 | 37| 53| s3 53 53 53 53 53
64 21 19 19 19 19 19 19 19 19 19
128 10 7 7 7 7 8 8 8 8 8
256 5 4 4 4 4 4 4 4 4 4
512 9 6 4 4 4 4 4 4 4 4
1024 11 5 3 3 3 4 4 4 4 4
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Table E.15 - IMD=2 Count, Cache Size= 128k, Benchmark: SHUTTLE.c

Associativity ]l
Block
Size Unified Cache Split Cache ||
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 161 157 157 157 157 158 158 158 158 158
32 54 53 53 53 53 53 53 53 53 53 ||
64 19 19 19 19 19 19 19 19 19 19
128 7 7 7 7 7 8 8 8 8 8
256 4 4 4 4 4 5 5 5 5 5
512 4 4 4 4 4 4 4 4 4 4
1024 3 3 3 3 3 4 4 4 4 4 Il
——e

G massmam— e — m—

Table E.16 - IMD =0 Count, Instruction/Data Caches, Cache Size=_8k, Benchmark:

SHUTTLE.c
Associativity
Block
Size Instruction Cache Data Cache
(bytes)
1 2 4 8 16 1 2 4 8 16

16 268 112 104 105 108 125 109 98 97 97 II

32 30 28 27 27 27 46 29 12 10 10
64 6 6 6 6 6 46 27 9 7 7 “
128 5 6 4 4 4 94 49 32 43 43 |
256 1 1 1 1 1 116 72 28 25 29
512 0 0 0 0 0 229 55 42 14 14
1024 0 0 0 0 n/a 379 155 51 21 n/a
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Table E.17 - IMD =0 Count, Instruction/Data Caches, Cache Size=16k, Benchmark:

SHUTTLE.c
Associativity
Block
Size Instruction Cache Data Cache
(bytes)
1 2 4 8 16 1 2 4 8 16 Il

16 129 85 85 83 82 112 97 97 97 97
32 26 24 24 23 22 24 10 10 10 11

64 5 4
128 3 3
256 1 1
512 0 0
=;1024 0 0

Table E.18 - IMD =0 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:

SHUTTLE.c :
Block Associativity ||
Size Instruction Cache Data Cache ||
(bytes) 1 2 4 8 16 1 2 4 8 16
16 82 82 82 82 82 98 97 97 97 97 “
32 22 22 22 22 22 13 11 11 11 11 II
64 3 3
4128 2 2
256 0 0
512 0 0
1024 0 0
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Table E.19 - IMD =0 Count, Instruction/Data Caches, Cache Size =64k, Benchmark:
SHUTTLE.c
Block Associativity
Size Instruction Cache Data Cache
OO T T2 [« ] 8 6] 1t [2]a]s ]l
16 82 82 82 82 82 97 97 97 97 97
32 22 22 22 22 22 11 11 11 11 11
64 3 3 3 3 3 5 4 4 4 3
128 2 2 2 2 2 3 3 3 3 3
256 0 0 0 0 0 3 3 3 3 3
512 0 0 0 0 0 2 2 2 2 2 “
| 1024 0 1 0 0 0 0 3 2 2 2 2 "
Table E.20 - IMD =0 Count, Instruction/Data Caches, Cache Size=128k, Benchmark:
SHUTTLE.c
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 82 82 82 82 82 97 97 97 97 97
32 22 22 22 22 22 11 11 11 11 11
64 3 3 3 3 3 5 4 4 4 4
128 2 2 2 2 2 3 3 3 3 3
256 0 0 0 0 0 3 3 3 3 3
512 0 0 0 0 0 2 2 2 2 2
1024 0 0 0 0 0 2 2 2 2 _LI_I
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Table E.21 - IMD=1 Count, Instruction/Data Caches, Cache Size=8k, Benchmark:

SHUTTLE.c
Associativity
Block
Size Instruction Cache Data Cache ||
(bytes
ytes) 1 2 4 8 16 1 2 4 8 16 ||

16 302 157 132 132 136 16 15 14 12 12 Il
32 145 74 66 60 60 87 82 54 50 50 ||

64 80 40 37 37 31 47 45 12 12 12 Il
128 39 11 9 7 9 59 54 46 12 13
256 3 2 2 2 2 43 55 44 24 31
512 1 0 0 1 1 67 91 71 31 13

| 1024 1 0 2 2= n/a 193 84 40 40 n/a

Table E.22 - IMD=1 Count, Instruction/Data Caches, Cache Size= 16k, Benchmark:

SHUTTLE.c
Associativity
Block
Size Instruction Cache Data Cache
(bytes)
1 2 4 8 16 1 2 4 8 16 |

16 218 116 112 102 102 12 12 12 12 12 “

32 54 51 49 41 41 82 50 50 50 50

128 6 6 6 5 6 55 7 6 9 7
256 1 1 1 1 1 34 9 10 8 6
512 0 0 0 0 0 60 7 6 6 5

4 5

1024 0 0 0 0 0 171 5 4

191




Table E.23 - IMD =1 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:
SHUTTLE.c

Associativity
Block
Size Instruction Cache Data Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 102 102 102 102 102 12 12 12 12 12
32 41 41 41 41 41 50 50 50 50 50
64 19 19 19 19 19 10 10 10 10 10
- |
128 5 5 5 5 5 17 6 6 7 6
256 1 1 1 1 1 14 8 5 5 5
512 0 0 0 0 0 26 7 4 4 4
1024 0 0 0 0 0 5 5 2 2 2 Il
B e —— ——e

Table E.24 - IMD =1 Count, Instruction/Data Caches, Cache Size =64k, Benchmark:

192

SHUTTLE.c :
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16 “
16 102 102 102 102 102 12 12 12 12 12
32 41 41 41 41 41 50 50 50 50 50
64 19 19 19 19 19 10 10 10 10 10
128 5 5 5 5 5 6 6 6 6 6 II
256 1 1 1 1 1 6 5 5 5 5 Il
512 0 0 0 0 0 4 4 4 4 4 ||
1024 0 0 0 0 0 2 2 2 2 A




Table E.25 - IMD=1 Count, Instruction/Data Caches, Cache Size= 128k, Benchmark:

SHUTTLE.c

Block Associativity
Size Instruction Cache Data Cache

ytes) 1 2 4 8 16 1 2 4 8 16
16 102 102 102 102 102 12 12 12 12 12 |
32 41 41 41 41 41 50 50 50 50 50
64 19 19 19 19 19 10 10 10 10 10
128 5 5 5 5 5 6 6 6 6 6
256 1 1 1 1 1 5 5 5 5 5
512 0 0 0 0 0 4 4 4 4 4

1024 0 0 0 0 0 2 2 2 2 2

Table E.26 - IMD =2 Count, Instruction/Data Caches, Cache Size=_8k, Benchmark:

SHUTTLE.c
Associativity
Block
Size Instruction Cache Data Cache
(bytes)
¥t 1 2 4 8 16 1 2 4 8 16

16 392 207 192 194 193 19 14 15 12 12

32 218 67 58 57 57 18 13 10 9 9

64 102 49 16 15 14 24 18 14 13 15

128 | 66 | 36 8 7 5 14 | 10 | 12 4 5
256 | 33 3 3 1 2 26 5 25 8 31
512 | 33 3 3 3 3 82 | 3 | 41| 2| 10 ||
1024 | 33 2 | 2 2 | wa] 98 | 18 4 | 4 | oa |
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Table E.27 - IMD=2 Count, Instruction/Data Caches, Cache Size= 16k, Benchmark:

SHUTTLE.c

Block Associativity ‘ “
Size Instruction Cache Data Cache

®ytes) 1 2 4 8 16 1 2 4 8 16 ||
16 280 155 153 143 141 20 14 12 12 12
32 110 45 46 42 40 18 10 9 9 9
64 43 10 10 10 10 23 14 12 12 12
128 34 2 2 2 2 12 3 3 3 2 ‘
256 1 1 1 1 1 18 2 2 2 2 ||
512 1 1 1 1 1 67 2 3 4 3
1024 1 1 1 1 1 80 2 2 2 2

Table E.28 - IMD =2 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:

SHUTTLE.c
Associativity V “
Block
Size Instruction Cache Data Cache
(bytes)
1 2 4 8 16 1 2 4 8 16

16 141 141 141 141 141 12 12 12 12 12 "

32 40 40 40 40 40 9 9 9 9 9
64 10 10 10 10 10 13 13 13 13 13

128 2 2 2 2

256 1 1 1 1

512 1 1 1 -1

1024 1 1 1 1

2
1
1
(MRIU-CN I N S A
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Table E.29 - IMD =2 Count, Instruction/Data Caches, Cache Size=64k, Benchmark:
SHUTTLE.c
Block Associativity
Size Instruction Cache Data Cache
ol IE 2 4 8 16 1 2 4 8 16 |
16 141 141 141 141 141 12 12 12 12 12
32 40 40 40 40 40 9 9 9 9 9
64 10 10 10 10 10 13 13 13 13 13
128 2 2 2 2 2 2 2 2 2 2
256 1 1 1 1 1 1 1 1 1 1
512 1 1 1 1 1 1 1 1 1 1 ||
1024 1 1 1 1 1 1 1 =1=__1____1J
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Table E.30 - IMD=2 Count, Instruction/Data Caches, Cache Size= 128k, Benchmark:
SHUTTLE.c
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 141 | 141 | 141 | 141 | 141 12 12 12 12 12
32 40 40 40 40 40 9 9 9 9 9
64 10 10 10 10 10 13 13 13 13 13
128 2 2 2 2 2 2 2 2 2 2 ||
256 1 1 1 1 1 1 1 1 1 1
512 1 1 1 1 1 1 1 1 1 1 ]‘
1024 1 1 1 1 1 1 1 1 1 1 |




E.2 IMD=0, 1, and 2 for LRCprl.c.ok Benchmark

Table E.31 - IMD=0 Count, Cache Size=8k, Benchmark: LRCprl.c.ok II

Associativity
Block
Size Unified Cache Split Cache
S
(bytes) 1 2 4 8 16 1 2 4 8 16

16 215 162 107 98 119 142 100 8 83 80

32 152 88 72 49 48 72 51 42 38 36

64 105 23 13 20 14 20 9 9 10 9
128 145 7 8 7 11 4 3 2 2 2
256 258 5 9 5 11 2 1 2 2 1
512 443 4 4 4 11 1 1 1 2 2
1024 468 11 11 11 n/a 12 10 1 1 n/a ||

Table E.32 - IMD=0 Count, Cache Size= 16k, Benchmark: LRCprl.c.ok

Block Associativity “
Size Unified Cache Split Cache ||
(bytes) 1 2 4 8 16 1 2 4 8 16 II
16 141 113 83 115 115 104 83 80 80 80 II
32 82 55 38 34 33 53 34 33 33 33 Il
64 35 17 8 8 8 7 7 7 7 7
128 | 35 2 1 2 3 1 1 1 1 1
256 71 1 1 2 2 0 0 0 0 0
512 118 1 1 1 0
1024 125 2 3 1
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Table E.33 - IMD =0 Count, Cache Size=32k, Benchmark: LRCprl.c.ok

Associativity
Block
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 112 95 78 78 81 80 80 80 80 80 "
32 57 45 45 45 45 34 33 33 33 33
64 17 7 7 7 7 7 7 7 7 7
128 2 1 1 1 1 1 1 1 1 1
256 2 0 0 0 0 0 0 0 0 0
512 12 0 0 0 0 0 0 0 0 0
1024 12 0 0 0 0 0 0 0 0 0
—

Table E.34 - IMD=0 Count, Cache Size=64k, Benchmark: LRCprl.c.ok

Block Associativity
Size Unified Cache Split Cache
(ytes) 1 2 4 8 16 1 2 4 8 16
16 80 78 78 78 78 81 80 80 80 80 4
32 35 33 33 33 33 34 33 33 33 33
64 7 7 7 7 7 7 7 7 7 7
128 1 1 1 1 1 1 1 1 1 1
256 1 0 0 0 0 0 0 0 0 0
512 0 0 0 0 0 0 0 0 0 0
1024 0 0 0 0 0 0 0 0 0 0_|
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Table E.36 - IMD=1 Count, Cache Size=_8k, Benchmark: LRCprl.c.ok

Table E.35 - IMD=0 Count, Cache Size=128k, Benchmark: LRCprl.c.ok
Block Associativity I|
Size Unified Cache Split Cache ||
(ytes) 1 2 4 8 16 1 2 4 8 16 ||
16 79 78 78 78 78 81 80 80 80 80
32 45 33 33 33 33 34 33 33 33 33
64 7 7 7 7 7 7 7 7 7 7 ||
128 1 1 1 1 1 1 1 1 1 1
256 0 0 0 0 0 0 0 0 0 0<]’
512 0 0 0 0 0 0 0 0 0 0
1024 0 0 0 0 0 0 0 0 0 0

Block Associativity
Size Unified Cache Split Cache
bytes) 1 2 4 8 16 1 2 4 8 16 ||
16 269 227 154 132 120 185 154 125 117 117

115 98 85 59 51 64 66 59 49 48
69 56 52 34 36 32 41 34 27 24
44 15 27 12 15 15 8 8 8 8
39 11 6 12 7 8 4 4 3 3 “
50 15 13 13 13 5 4 3 2 L'
42 25 3 3 n/a 3 1 3 3 n/a
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Table E.37 - IMD=1 Count, Cache Size= 16k, Benchmark: LRCprl.c.ok

Table E.38 - IMD=1 Count, Cache Size=32k, Benchmark: LRCprl.c.ok

Block Associativity
Size Unified Cache Split Cache "
(bytes) 1 2 4 8 16 1 2 4 8 16 II
16 186 152 117 116 116 145 118 117 117 117 Il
32 77 54 46 46 46 49 46 46 46 46 ||
64 31 22 23 22 22 23 22 22 22 22 II
128 12 5 6 6 6 7 5 5 5 5 Jl
256 11 3 4 4 3 2 2 2 2 2 Il
512 10 4 4 2 3 1 1 1 1 2
| 1024 | 6 2 1 3 3 1 1 1 1 1
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Associativity
Block
Size Unified Cache Split Cache
es
bytes) 1 2 4 8 16 1 2 4 8 16
16 146 126 116 116 116 117 117 117 117 117
32 58 46 46 46 46 46 46 46 46 46
64 26 22 22 22 22 22 22 22 22 22
128 6 5 5 5 5 5 5 5 5 5 I
256 3 2 2 2 2 2 2 2 2 2.
512 3 1 1 1 1 1 1 1 1 1
1024 1 1 1 1 1 1 1 1 1 1 “
| ——————— —————————————




Table E.39 - IMD=1 Count, Cache Size =64k, Benchmark: LRCprl.c.ok

Associativity "

Block
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16

16 119 116 116 116 116 117 117 117 117 117 ||

32 49 46 46 46 46 46 46 46 46 46 II

128 6 5 5 5 5 5 5 5 5 5
256 3 2 2 2 2 2 2 2 2 2
512 1 1 1 1 1 1 1 1 1 1 ||
1024 1 1 1 1 1 1 | 1 1 1 1

Table E.40 - IMD=1 Count, Cache Size= 128k, Benchmark: LRCpr1.c.ok

Associativity
Block
Size Unified Cache Split Cache
(bytes)
1 2 4 8 16 1 2 4 8 16 |
16 116 | 116 | 116 | 116 | 116 | 117 | 117 | 117 | 117 | 117
32 46 46 46 46 46 46 46 | 46 46 46
64 22 2 22 22 2 2 2 22 2 2
128 5 5 5 5 5 5 5 5 5 5
256 2 2 2 2 2 2 2
512 1 1 1 1 1 1 1
1024 1 1 1 1 1 1 1
p————— —— — ——— ———————
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Table E.41 - IMD =2 Count, Cache Size=8k, Benchmark: LRCprl.c.ok

Block Associativity
Size Unified Cache Split Cache
(oytes) 1 2 4 8 16 1 2 4 8 16
16 297 225 147 133 126 196 147 118 117 116 ||
32 148 112 85 56 53 75 52 54 44 41
64 77 56 32 24 24 28 20 19 17 15
128 74 29 14 12 16 22 12 10 10 12
l' 256 82 25 17 13 9 39 8 7 5 6
512 76 20 7 7 7 30 8 7 9 8
1024 85 16 5 5 n/a 29 6 7 16 _n_/iJ

Table E.42 - IMD =2 Count, Cache Size= 16k, Benchmark: LRCprl.c.ok

Associativity Jl
Unified Cache Split Cache |
8 16 1 2 4 8 16
1m9 | 117 | 164 | 118 | 116 | 116 | 116
40 |40 | 61 | a4 | 44 | & | @
B3 | 3 17| 14| 14 ] 14| 14
8 7 9 8 8 8 8 ||
6 6 5 5 5 5 5
5 6 5 5 5 5 5
3 4 4 4 4 4 4 |
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Table E.43 - IMD=2 Count, Cache Size=32k, Benchmark: LRCprl.c.ok
Block Associativity ||
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 201 135 117 117 117 117 116 116 116 116
32 78 49 40 40 40 41 41 41 41 41
64 15 14 13 13 13 14 14 14 14 14
128 7 7 7 7 7 8 8 8 8 8
256 5 4 4 4 4 5 5 5 5 5
512 4 4 4 4 4 5 5 5 5 5
‘_1_9_2;4_ 2 2 2 2 2=__ 4 4 4 4 QJ
[ Table E.44 - IMD =2 Count, Cache Size =64k, Benchmark: LRCprl.c.ok
Block Associativity
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 120 117 117 117 117 117 116 116 116 116
32 42 40 40 40 | 40 41 41 41 41 41 f
64 14 13 13 13 13 14 14 14 14 14
128 7 7 7 7 7 8 8 8 8 8
256 5 4 4 4 4 5 5 5 5 5.
512 4 4 4 4 4 5 5 5 5 5
1024 2 2 2 2 2 4 4 4 4 4




Table E.45 - IMD =2 Count, Cache Size=128k, Benchmark: LRCprl.c.ok
Block Associativity
Size Unified Cache Split Cache
®ytes) 1 2 4 8 16 1 2 4 8 16
16 118 117 117 117 117 117 116 116 116 116
32 40 40 40 40 40 41 41 41 41 41
64 13 13 13 13 13 14 14 14 14 14
128 7 7 7 7 7 8 8 8 8 8
256 4 4 4 4 4 5 5 5 5 5
512 4 4 4 4 4 5 5 5 5 5 ||
1024 2 2 2 2 2 4 4 4 4 4

Table E.46 - IMD=0 Count, Instruction/Data Caches, Cache Size =8k, Benchmark:
LRCprl.c.ok
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 110 83 71 | 67 64 104 98 98 98 99 Jl
32 53 42 34 31 29 13 10 10 10 10 "
64 16 6 6 7 6 11 4 4 4 4 II
128 6 4 3 3 3 11 5 4 4 4
256 1 1 1 1 1 24 6 4 4 4
512 1 1 1 1 1 32 8 3 5 6
1024 1 0 0 0 n/a 60 52 4 5 n/a |
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Table E.47 - IMD=0 Count, Instruction/Data Caches, Cache Size=16k, Benchmark:

LRCprl.c.ok
Block Associativity ||
Size Instruction Cache Data Cache JI
(bytes) 1 2 4 8 16 1 2 4 8 16
16 80 66 64 64 64 100 99 99 9 99
32 38 26 26 26 26 11 11 11 11 11
64 5 4 4 4 4 4 4 4 4 4
128 3 2 2 2 2 4 4 4 4 4
26 | o | o | oo o] e ] 4] 4] al]al
512 0 1 1 1 1 13 3 3 3 3 ||
1024 0 0 0 0 | 0 22 22 3= 2 2 I

Table E.48 - IMD =0 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:

LRCprl.c.ok
Block Associativity
Size Instruction Cache Data Cache
oytss) 1 2 4 8 16 1 2 4 8 16
16 64 64 64 64 64 100 99 99 99 99
32 26 26 26 26 26 11 11 11 11 11
64 4 4 4 4 4 4 4 4 4 4 ||
128 2 2 2 2 2 4 4 4 4 4
256 0. 0 0 0 0 4 4 4 4 4
512 0 0 0 0 0 3 3 3 3 3 “
1024 0 0 0 0 0 3 3 3 2 A
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Table E.49 - IMD=0 Count, Instruction/Data Caches, Cache Size=64k, Benchmark:

LRCprl.c.ok
Block Associativity “
Size Instruction Cache Data Cache ||
(bytes) 1 2 4 8 16 1 2 4 8 16 ||
16 64 64 64 64 64 100 99 99 99 9
32 26 26 26 26 26 11 11 11 11 11
64 4 4 4 4 4 4 4 4 4 4 II
128 2 2 2 2 2 4 4 4 4 4 ||
3 | o | o | o o o] a|a]|a] ]
512 0 0 0 0 0 3 3 3 3 3
L 1024 0 0 0 0 0 2 3 2 2 2

Table E.50 - IMD =0 Count, Instruction/Data Caches, Cache Size=128k, Benchmark:
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LRCprl.c.ok

Block Associativity

Size Instruction Cache Data Cache ||

(bytes) 1 2 4 8 16 1 2 4 8 16
16 64 64 64 64 64 100 99 99 9 99 “
2 | 26 | 26 | 26 | 26 [ 26| u ||| u|u ||
64 4 4 4 4 4 4 4 4 4 4
128 2 2 2 2 2 4 4 4 4 4
256 0 0 0 0 0 4 4 4 4 4
512 0 0 0 0 0 3 3 3 3 3
1024 0 0 0 0 0 2 2 2 2 __i_I_J




Table E.51 - IMD=1 Count, Instruction/Data Caches, Cache Size=28k, Benchmark:
LRCprl.c.ok
Block Associativity Il
Size Instruction Cache Data Cache ||
(bytes) 1 2 4 8 16 1 2 4 8 16
16 184 151 112 104 104 11 9 9 9 9
32 51 59 59 39 38 57 51 50 50 50
64 16 33 25 18 15 8 8 8 8 8 jl
128 6 5 5 6 6 6 8 6 6 6 ||
256 3 1 2 1 1 15 8 6 6 5
512 2 1 1 1 1 34 38 15 7 7
1024 0 0 1 1 n/a 22 31 13 13 n/a |

Table E.52 - IMD=1 Count, Instruction/Data Caches, Cache Size= 16k, Benchmark:

LRCprl.c.ok
Block Associativity Il
Size Instruction Cache Data Cache “
®ytes) 1 2 4 8 16 1 2 4 8 16 “
16 141 104 104 104 104 10 9 9 9 QJI
32 40 36 36 36 36 52 50 50 50 50 “
64 13 12 12 12 12 8 8 8 8
6 6
5 5
4
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Table E.53 - IMD=1 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:
LRCprl.c.ok
Block Associativity
Size Instruction Cache Data Cache
®ytes) 1 2 4 8 16 1 2 4 8 16 ||
16 104 104 104 104 104 9 9 9 9 9
32 36 36 36 36 36 50 50 50 50 50
64 12 12 12 12 12 8 8 8 8 8
128 1 1 1 1 1 6 6 6 6 6 ||
26 | o | o | oo o s |[s]|s|s]s]
512 0 0 0 0 0 4 4 4 4 4 II
1024 0 0 0 0 0 2 2 2 2 ;JI

Table E.54 - IMD =1 Count, Instruction/Data Caches, Cache Size=64k, Benchmark:
LRCprl.c.ok
Associativity
Block
Size Instruction Cache Data Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 104 104 104 104 104 9 9 9 9 9
32 36 36 36 36 36 51 50 50 50 50
64 12 12 12 12 12 8 8 8 8 8
128 1 1 1 1 1 6 6 6 6 6
256 0 0 0 0 0 5 5 5 5 5
512 0 0 0 0 0 4 4 4 4 4
1024 0 0 0 0 0 2 2 2 2 2
I e—— e ———
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Table E.55 - IMD=1 Count, Instruction/Data Caches, Cache Size= 128k, Benchmark:

LRCprl.c.ok
Associativity
Block
Size Instruction Cache Data Cache
es
(bytes) 1 2 4 8 16 i 2 4 8 16
16 104 104 104 104 104 9 9 9 9 9 ||

32 36 36 36 36 36 51 50 50 50 50

64 12 12 12 12 12 8 8 8 8 8

128 1 1 1 1 1 6 6 6 6 6
256 0 0 0 0 0 5 5 5 5 5
512 0 0 0 0 0 4 4 4 4 4 |
1024 0 0 0 0 0 2 2 2 2 2

Table E.56 - IMD =2 Count, Instruction/Data Caches, Cache Size=8k, Benchmark:
LRCprl.c.ok
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 183 137 116 113 11 11 4 3 3 3
32 61 38 33 33 30 14 5 4 4 4
64 20 14 22 9 8 16 8 7 7 7
128 14 5 6 4 6 7 2 1 1 1 II
256 11 3 3 2 3 14 1 3 1 1
512 11 2 2 2 2 14 3 2 1 1
1024 11 2 2 2 n/a 24 33 1 1 n/a
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Table E.57 - IMD=2 Count, Instruction/Data Caches, Cache Size= 16k, Benchmark:

LRCprl.c.ok

Block Associativity "
Size Instruction Cache Data Cache

®ytes) 1 2 4 8 16 1 2 4 8 16 ||
16 161 112 111 111 111 4 4 3 3 3 II
32 49 30 30 30 30 5 5 4 4 4
64 9 8 7 7 7 9 9 8 8 8
128 3 3 3 3 3 3 2 1 1 1
256 2 2 2 2 2 3 2
512 1 1 1 1 1 2 1

IL 1024 1 1 1 1 1 3 2

Table E.58 - IMD =2 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:

LRCprl.c.ok
Block Associativity
Size Instruction Cache Data Cache
Bytcs) 1 2 4 8 16 1 2 4 8 16
16 11 | o1 | o1 o1 | o1 4 3 3 3 3
2 | 30 |30 |32 |3 || « [ a4 ]a]al]
64 7 7 7 7 7 9 8 8 8 8
128 3 3 3 3 3 2 1 1 1 1 ||
256 2 2 2 2 2 2 1 1 1 1
512 1 1 1 1 1 2 1 1 1 1
| 1024 | I 1 1 2 2 2 1 1
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Table E.59 - IMD =2 Count, Instruction/Data Caches, Cache Size =64k, Benchmark:

LRCprl.c.ok
Block Associativity
Size Instruction Cache Data Cache
(Btes) 1 2 4 8 16 1 2 4 8 16
16 111 111 111 111 111 4 3 3 3 3 ||
32 30 30 30 30 30 5 4 4 4 4
64 7 7 7 7 7 9 8 8 8 8
128 3 3 3 3 3 2 1 1 1 1
256 2 2 2 2 2 2 1 1 1 1
512 1 1 1 1 1 2 1 1 1 1
1024 1 1 1 1 1 2 __ 2 1 1 1
|| Table E.60 - IMD =2 Count, Instruction/Data Caches, Cache Size=128k, Benchmark: Il
LRCprl.c.ok
Associativity J|
Instruction Cache Data Cache
1 2 4 8 16 1 2 4 8 16
111 11 1 111 111 4 3 3 3 3 ||
30 30 30 30 30 5 4 4 4 4
7 7 7 7 7 9 8 8 8 8
3 3 3 3 3 2 1 1 1 1
2 2 2 2 2 2 1 1 1 1
1 1 1 1 1 2 1 1 1 1 II
VRN ISV (NN N N 5 T




E.3 IMD=0, 1, and 2 for LRCprl.c.fail Benchmark

Table E.61 - IMD=0 Count, Cache Size =8k, Benchmark: LRCpr1.c.fail

Associativity
Block
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16

16 265 187 134 131 128 178 119 109 100 97 ||
32 182 100 77 60 58 90 56 48 44 41

64 131 26 19 26 19 30 12 13 13 13

128 240 14 11 9 12 8 5 5 3 4
256 372 7 11 6 12 3 2 3 3 2
512 900 6 7 3 11 1 1 1 2 2
1024 1470 34 17 17 n/a 13 10 1 1 n/a |

Table E.62 - IMD=0 Count, Cache Size= 16k, Benchmark: LRCpr1.c.fail

Associativity
Block
Size Unified Cache : Split Cache
es
ytes) 1 | 2 4 8 16 1 2 4 8 16

16 169 129 96 90 88 126 96 90 90 90

32 9 59 38 34 38 63 37 35 .36 35

64 55 22 10 11 12 11 9 8 9 8
128 120 5 2 4 4 4 3 2 3 2 ||
256 162 2 2 3 3 1 1 1 2 1 ll
512 478 3 1 1 1 0 1 1 1 1 ||
L1024 | 963 25 5 1 1 1 1 0 0 0 0
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Table E.63 - IMD=0 Count, Cache Size=32k, Benchmark: LRCpr1.c.fail
Block Associativity
Size Unified Cache Split Cache
i ytes) 1 2 4 8 16 1 2 4 8 16 |
16 121 108 89 88 88 91 90 90 90 90 II
32 48 53 35 35 35 36 35 35 35 35
64 17 8 8 8 8 8 8 8 8 8
128 3 2 2 2 2 2 2 2 2 2
256 3 1 1 1 1 1 1 1 1 1 "
512 23 2 0 0 0 0 0 0 0 0 “
1024 23 23 0 0 0 0 0 0 1 0 0 “

Table E.64 - IMD=0 Count, Cache Size =64k, Benchmark: LRCprl.c.fail
Block Associativity ||
Size Unified Cache - Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16 “
16 91 88 88 88 88 91 90 90 90 90
32 37 35 35 35 35 36 35 35 35 35
64 8 8 8 8 8 8 8 8 8 8
128 2 2 2 2 2 2 2 2 2 2
256 2 1 1 1 1 1 1 1 1 1 ||
512 2 0 0 0 0 0 0 0 0 0 ||
EIOM 2 0 _ 0 0 0 0 | 0 0 0 0
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II Table E.65 - IMD=0 Count, Cache Size=128k, Benchmark: LRCpr1.c.fail

Associativity
Block
Size Unified Cache Split Cache
(bytes)
vt 1 2 4 8 16 1 2 4 8 16 |

16 90 88 88 88 88 91 90 90 90 90
32 36 35 35 35 35 36 35 35 35 35

oo

64 8 8 8 8 8 8 8 8 8

128 2 2 2 2 2 2 2 2 2

[\*]

256 1 1 1 1 1 1 1 1 1

512 2 0 0 0 0 0 0 0 0

1

0

| 1024 2 0 0 0 0 0 0 0 0 0
—

Table E.66 - IMD=1 Count, Cache Size=8k, Benchmark: LRCpr1.c.fail

Associativity "
Block
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 317 263 190 176 170 230 182 155 149 146
32 140 106 92 69 66 88 71 64 55 56

128 115 32 21 19 22 61 18 10 12 10

256 194 21 8 16 10 152 5 4 3 4

64 111 63 57 45 44 64 48 38 31 29 ||

512 253 26 18 17 17 149 5 4 3 4

1024 | 510 | 34 6 7 | wa ] 357 | 3 3 3 | wa |
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Table E.67 - IMD =1 Count, Cache Size= 16k, Benchmark: LRCpr1.c.fail
Block Associativity l‘
Size Unified Cache Split Cache
ytes) 1 2 4 8 16 1 2 4 8 16 “
16 220 181 145 136 133 176 138 136 134 134 ||
32 98 60 52 49 47 68 48 48 47 47
64 70 28 30 26 26 52 25 24 24 24
128 66 11 9 9 8 47 10 8 7 7
256 159 5 4 5 4 144 2 2 2 2
512 197 8 3 3 4 143 1 1 1 1
L1024 423 : 1 3 3 354 1 1 1 1 II

Table E.68 - IMD =1 Count, Cache Size=32k, Benchmark: LRCpr1.c.fail

Block Associativity
Size Unified Cache Split Cache

(bytes) 1 2 4 8 16 1 2 4 8 16
16 165 146 133 133 133 134 134 134 134 134
32 59 48 47 47 47 47 47 47 47 47
64 29 26 24 24 24 24 24 24 24 24
128 8 7 7 8 7 7 7 7 7 7
256 3 2 2 2 2 2 2 2 2 2
512 4 1 1 1 1 1 1 1 1 1

1024 1 1 1 1 1 1 1 1 1 1 ||
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Table E.69 - IMD=1 Count, Cache Size =64k, Benchmark: LRCprl.c.fail

Block Associativity II
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
" 16 137 133 133 133 133 134 134 134 134 134
32 51 47 47 47 47 47 47 47 47 47
64 29 24 24 24 24 24 24 24 24 24
128 8 7 7 7 7 7 7 7 7 7
256 3 2 2 2 2 2 2 2 2 2
|| 512 1 1 1 1 1 1 1 1 1 1
1024 1 1 1 1 1 % % 1 1 1
Table E.70 - IMD=1 Count, Cache Size= 128k, Benchmark: LRCpr1.c.fail
Block Associativity
Size Unified Cache Split Cache
®ytes) 1 2 4 8 16 1 2 4 8 16
" 16 133 133 133 133 133 134 134 134 134 134
|| 32 47 47 47 47 47 47 47 47 47 47
64 24 24 24 24 24 24 24 24 24 24
128 7 7 7 7 7 7 7 7 7 7 "
256 2 2 2 2 2 2 2 2 2 2 ||
512 1 1 1 1 1 1 1 1 1 1 "
1024 1 1 1 1 1 1 1 1 1 1
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Table E.71 - IMD=2 Count, Cache Size=_8k, Benchmark: LRCprl.c.fail
Block Associativity
Size Unified Cache | Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 350 | 294 | 177 | 168 | 170 | 245 | 174 | 148 | 139 | 137 |
32 176 126 99 76 72 97 63 65 59 55
64 102 67 35 31 31 38 23 23 24 22
128 109 38 16 17 21 41 16 11 12 14
256 122 30 20 12 12 69 10 8 6 7
512 157 30 8 10 8 59 9 8 11 9
1024 276 32 5 7 n/a 50 6 7 16 n/a “
Table E.72 - IMD=2 Count, Cache Size= 16k, Benchmark: LRCprl.c.fail . .
Block Associativity
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 264 195 142 134 131 194 133 131 130 130
32 125 | 81 52 | 48 | a1 | 4 | 49 | 41 | 41 | &
64 59 30 19 21 19 22 19 18 17 17
128 64 20 10 9 9 23 11 9 9 9
256 69 16 8 7 6 23 7 6 6 6
512 108 26 6 6 6 22 6 6 5 5
1024 209 24 3 3 4 10 4 4 4 4 |
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e
Table E.73 - IMD =2 Count, Cache Size =32k, Benchmark: LRCprl1.c.fail

Associativity
Block
Size Unified Cache Split Cache
es
(bytes) 1 2 4 8 16 1 2 4 8 { 16 |
16 217 157 131 131 131 131 130 130 130 130
32 83 59 46 46 46 47 47 47 47 47
64 17 16 16 16 16 17 17 17 17 17
128 8 9 8 8 8 9 9 9 9 9
256 7 6 6 5 5 7 7 6 6 6
512 5 5 5 4 4 6 6 5 5 5
1024 2 2 2 2 2 4 4 4 4 4
e

Table E.74 - IMD =2 Count, Cache Size=64k, Benchmark: LRCprl.c.fail

Block Associativity .
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 134 131 131 131 131 131 130 130 130 130
32 48 46 46 46 46 47 47 47 47 47
64 17 16 16 16 16 17 17 17 17 17
128 8 8 8 8 8 9 9 9 9 9
256 7 5 5 5 5 7 6 6 6 6
512 5 4 4 4 4 6 5 5 5 5
[ 1024 2 2 2 2 2 4 4 4 4 4
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Table E.75 - IMD=2 Count, Cache Size=128k, Benchmark: LRCpr1.c.fail

Associativity
Block
Size Unified Cache Split Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 134 131 131 131 131 131 130 130 130 130
32 47 46 46 46 46 47 47 47 47 47
64 17 16 16 16 16 17 17 17 17 17
128 8 8 8 8 8 9 9 9 9 9
256 6 5 5 5 5 7 6 6 6 6
512 5 4 4 4 4 6 5 5 5 5
1024 2 2 2 2 2 4 4 4 4 4

Table E.76 - IMD=0 Count, Instruction/Data Caches, Cache Size =8k, Benchmark:

LRCprl.c.fail
Associativif
Block 2l
Size Instruction Cache Data Cache
(bytes)
1 2 4 8 16 1 2 4 8 16
16 138 102 95 87 .| 82 116 98 98 98 98
32 63. 47 40 38 35 31 10 10 10 10
64 20 9 11 11 11 37 4 4 4 4
128 8 6 6 5 6 64 5 4 4 4
256 2 2 2 2 2 197 6 5 4 4
512 1 1 1 1 1 205 8 4 6 7
1024 1 0 0 0 n/a 553 51 4 5 n/a
=1 - A L OO I L
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Table E.77 - IMD=0 Count, Instruction/Data Caches, Cache Size=16k, Benchmark:
LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
I bytes) 1 2 4 8 16 1 2 4 8 16
16 95 78 73 73 73 111 99 99 99 99
32 42 28 27 28 27 28 11 11 10 11
64 7 6 5 6 5 31 4 4 4 4
128 5 4 3 4 3 57 4 4 4 4
256 1 1 1 2 1 168 4 4 4 4
512 0 1 1 1 1 177 3 3 3 3
1024 0 0 0 0 0 506 22 3 2 2

Table E.78 - IMD=0 Count, Instruction/Data Caches, Cache Size =32k, Benchmark:

LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache "
(bytes) 1 2 4 8 16 1 2 4 8 16
16 73 73 73 73 73 102 99 99 99 99
32 27 27 27 27 27 11 11 11 11 11
64 3 3 3 3 3 4 4 4 4 4
128 1 1 1 1 1 4 4 4 4 4
256 1 1 1 1 1 4 4 4 4 4
512 0 0 0 0 0 3 3 3 3 3 ||
1024 0 0 0 0 0 3 3 3 2 2
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Table E.79 - IMD=0 Count, Instruction/Data Caches, Cache Size=64k, Benchmark:

LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 73 73 73 73 73 102 99 99 99 99
32 27 27 27 27 27 11 11 11 11 11
64 5 5 5 5 5 4 4 4 4 4
128 3 3 3 3 3 4 4 4 4 4
256 1 1 1 1 1 4 4 4 4 4
512 0 0 0 0 0 3 3 3 3 3
L1024 0 0 0 0 0 2 3 3 3 L.
Table E.80 - IMD =0 Count, Instruction/Data Caches-,—C—a;e Size =128k, Benchmark:
LRCprl.c.fail ' “
Block Associativity
Size Instruction Cache Data Cache
(®ytes) 1 2 4 8 16 1 2 4 8 16
16 73 73 73. 73 73 102 99 99 99 99
32 27 27 27 27 27 11 11 11 11 11
64 5 5 5 5 5 4 4 4 4 4
128 3 3 3 3 3 4 4 4 4 4
256 1 1 1 1 1 4 4 4 4 4
512 0 0 0 0 0 3 3 3 3 3
1024 0 0 0 0 0 2 2 2 2 2
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Table E.81 - IMD=1 Count, Instruction/Data Caches, Cache Size=8k, Benchmark:

LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 225 181 147 139 136 16 10 9 9 9
32 61 64 66 49 50 61 51 50 50 50
64 24 38 29 23 21 12 8 8 8 8
128 13 12 5 9 7 20 11 6 6 6
256 4 2 1 1 2 48 9 6 6 5
512 3 2 1 1 1 67 34 15 9 9
1024 0 1 1 1 n/a 115 30 13 13 n/a

Table E.82 - IMD=1 Count, Instruction/Data Caches, Cache Size= 16k, Benc

=]
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LRCprl.c.fail

Block Associativity II
Size Instruction Cache Data Cache

(bytes) 1 2 4 8 16 1 2 4 8 16
16 169 129 129 127 127 14 10 9 9 9
32 44 39 39 38 38 57 50 50 50 50
64 17 16 15 15 15 12 8 8 8 8 ||
128 5 6 4 3 3 20 8 6 6 6
256 0 0 0 0 0 38 5 5 5 5
512 0 0 0 0 0 38 4 4 4 4 ||
1024 0 0 0 0 0 95 6 4 2 2 Il
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Table E.83 - IMD =1 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:
LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
Oy I 2 4 8 16 1 2 4 8 16 |
16 127 | 127 | 127 | 127 | 127 ] 10 9 9 9 9 II
32 38 38 38 38 38 53 50 50 50 50
64 15 15 15 15 15 8 8 8 8 8
128 3 3 3 3 3 6 8 6 6 6
256 0 0 0 0 0 5 5 5 5 5
512 0 0 0 0 0 4 4 4 4 4
1024 0 0 0 0 0 2 5 2 2 2

Table E.84 - IMD =1 Count, Instruction/Data Caches, Cache Size =64k, Benchmark:

LRCprl.c.fail ||
Block Associativity ' ||
Size Instruction Cache Data Cache "
(bytes) 1 2 4 8 16 1 2 4 8 16 ]l
16 127 127 127 127 127 10 9 9 9 9 II

32 38 38 38 38 38 53 50 50 50 50

64 15 15 15 15 15 8 8 8 8 8
128 3 3 3 3 3 6 6 6 6 6 "
256 0 0 0 0 0 5 5 5 5 5 "
512 0 0 0 0 0 4 4 4 4 4 |l

1024 0 0 0 0 0 2 2 2 2 2
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Table E.85 - IMD =1 Count, Instruction/Data Caches, Cache Size= 128k, Benchmark:
LRCprl.c.fail
Associativity
Block
Size Instruction Cache Data Cache
€es
(bytes) 1 2 4 8 16 1 2 4 8 16
16 127 127 127 127 127 10 9 9 9 9

64 15 15 15 15 15 8 8 8 8 8 ||
128 3 3 3 3 3 6 6 6 6 6
256 0 0 0 0 0 5 5 5 5 5
512 0 0 0 0 0 4 4 4 4 4

1024 0 0 0 0 0 2 2 2 2 2

Table E.86 - IMD =2 Count, Instruction/Data Caches, Cache Size=_8k, Benchmark:
LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
(oytes) 1 2 4 8 16 1 2 4 8 16 “
16 220 166 142 134 131 13 5 4 4 4 “
32 74 49 43 44 41 17 6 5 5 5
64 25 18 26 16 14 32 8 7 7 7
128 17 9 8 6 7 43 2 1 1 1
256 12 4 4 3 4 79 1 3 1 1
512 11 3 2 2 2 79 3 2 1 1
1024 11 2 2 2 n/a 184 32 1 1 n/a




Table E.87 - IMD =2 Count, Instruction/Data Caches, Cache Size =16k, Benchmark:
LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 181 122 121 120 120 7 5 4 4 4 II
32 57 37 36 36 36 5
64 11 12 11 10 10 7
128 4 5 4 4 4
256 3 3 3 3 3
512 1 1 1 1 1
1024 1 1 1 1 1

Table E.88 - IMD=2 Count, Instruction/Data Caches, Cache Size=32k, Benchmark:

LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
(btes) 1 2 4 8 16 1 2 4 8 16
16 120 120 120 120 120 5 4 4 4 II
32 36 36 36 36 36 6 5 5 5 5 ||
64 10 10 10 10 10 9 8 8 8 8 "
128 4 4 4 4 4 2 1 1 1 1 ||
256 3 3 3 3 3 2 1 1 1 1
512 1 1 1 1 1 2 1 1 1 1
1024 1 1 1 1 1 2 2 2 1 1 “
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Table E.89 - IMD =2 Count, Instruction/Data Caches, Cache Size =64k, Benchmark:

LRCprl.c.fail
Block Associativity
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16 ||
16 120 120 120 120 120 5 4 4 4 4 II
32 36 36 36 36 36 6 5 5 5
64 10 10 10 10 10 9 8 8 8 8
128 4 4 4 4 4 2 1 1 1 1
256 3 3 3 3 3 2 1 1 1 1
512 1 1 1 1 1 2 1 1 1 1
1024 1 1 1 1 1 2 2 1 1 é

Table E.90 - IMD =2 Count, Instruction/Data Caches, Cache Size= 128k, Benchmark:

LRCprl.c.fail
Block Associativity “
Size Instruction Cache Data Cache
(bytes) 1 2 4 8 16 1 2 4 8 16
16 120 120 120 120 120 5 4 4 4 4 ||
32 36 36 36 36 36 6 5 5 5 5 "
64 10 - 10 10 10 10 9 8 8 8 8 ||
128 4 4 4 4 4 2 1 1 1 1
256 3 3 3 3 3 2 1 1 1 1 “
512 1 1 1 1 1 2 1 1 1 1 ||
1024 1 1 1 1 1 2 1 1 1 Q
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